Tag: NCERT class 12th Chapter 5 Exercise 5.5 Maths Solutions

  • Exercise-5.5, Class 12th, Maths, Chapter 5, NCERT

    Question 1

    Differentiate the following function w.r.t. x:

    y=cosxcos2xcos3x

    Solution

    Given:

    y=cosxcos2xcos3x

    This is a product of three functions.
    Use product rule:

    (uvw)=uvw+uvw+uvw

    Let:

    u=cosx,v=cos2x,w=cos3x

    Then:

    u=sinx,v=2sin2x,w=3sin3x

    Applying product rule:

    y=uvw+uvw+uvw
    y=(sinx)(cos2x)(cos3x)+(cosx)(2sin2x)(cos3x)

    +(cosx)(cos2x)(3sin3x)
    y=sinxcos2xcos3x2cosxsin2xcos3x3cosxcos2xsin3x


    Question 2

    Differentiate the following w.r.t. x:

    y=(x1)(x2)(x3)(x4)(x5)

    Solution 

    Rewrite using exponent form:

    y=((x1)(x2)(x3)(x4)(x5))1/2

    Taking log on both sides (log differentiation method):

    logy=12[log(x1)+log(x2)log(x3)log(x4)log(x5)]

    Differentiate w.r.t. x:

    1ydydx=12[1x1+1x21x31x41x5]

    Multiply both sides by y:

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]

    Final Answer 

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]


     

    Question 3

    Differentiate w.r.t. x:

    y=(logx)cosx

    Solution :

    Take natural logarithm on both sides:

    logy=cosxlog(logx)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side (product rule):

    ddx(cosxlog(logx))=sinxlog(logx)+cosx1logx1x

    So:

    1ydydx=sinxlog(logx)+cosxxlogx

    Multiply both sides by y:

    dydx=y[sinxlog(logx)+cosxxlogx]

    Substitute y=(logx)cosx:

    dydx=(logx)cosx[cosxxlogxsinxlog(logx)]


    Question 4

    Differentiate w.r.t. x:

    y=xx2sinx

    Solution :

    The second term is simple to differentiate.
    The first term xx requires logarithmic differentiation.

    Let:

    u=xx

    Taking log on both sides:

    logu=xlogx

    Differentiate w.r.t. x:

    Left side:1ududx

    Right side (product rule):

    ddx(xlogx)=1logx+x1x=logx+1

    So:

    1ududx=logx+1
    dudx=xx(logx+1)

    Now differentiate the whole expression:

    Given:y=xx2sinx

    dydx=xx(logx+1)2cosx


    Question 5

    Differentiate w.r.t. x:

    y=(x+3)2(x+4)3(x+5)4

    Solution

    Taking logarithm on both sides:

    logy=2log(x+3)+3log(x+4)+4log(x+5)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side:

    21x+3+31x+4+41x+5

    So:1ydydx=2x+3+3x+4+4x+5

    Multiply both sides by y:

    dydx=(x+3)2(x+4)3(x+5)4(2x+3+3x+4+4x+5)


    Question 6

    Differentiate w.r.t. x:

    y=(1+1x)(1+1x2)(1+1x3)

    Solution 

    Take logarithm on both sides:

    logy=log(1+1x)+log(1+1x2)+log(1+1x3)

    Differentiate both sides w.r.t. x:

    Left side:1ydydx

    Right side (chain rule):

    ddxlog(1+1x)=11+1x(1x2)=1x(x+1)

    Similarly:

    ddxlog(1+1x2)=11+1x2(2x3)=2x2(x2+1)

    ddxlog(1+1x3)=11+1x3(3x4)=3x3(x3+1)

    So:

    1ydydx=1x(x+1)2x2(x2+1)3x3(x3+1)

    Multiply both sides by y:

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]

    Final Answer

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]


    Question 7

    Differentiate w.r.t. x:

    y=(logx)x+xlogx

    Solution :

    Since the expression is the sum of two terms, differentiate them separately.

    Part 1: Differentiate u=(logx)x

    Take logarithm on both sides:

    logu=xlog(logx)

    Differentiate:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(logx)]=log(logx)+x1logx1x=log(logx)+1logx

    So:

    dudx=(logx)x[log(logx)+1logx]

    Part 2: Differentiate v=xlogx

    Let:v=xlogx

    Take logarithm:

    logv=logxlogx=(logx)2

    Differentiate:

    Left side:1vdvdx

    Right side:

    2logx1x=2logx

    Thus:

    dvdx=xlogx2logxx

    Combine (since y=u+v)

    dydx=(logx)x[log(logx)+1logx]+xlogx2logxx


    Question 8

    Differentiate w.r.t. x:

    y=(sinx)x+sin1x

    Solution

    Part 1: Differentiate (sinx)x

    Let

    u=(sinx)x

    Take logarithm:

    logu=xlog(sinx)

    Differentiate both sides:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(sinx)]=log(sinx)+x1sinxcosx

    =log(sinx)+xcotx

    So:dudx=(sinx)x[log(sinx)+xcotx]

    Part 2: Differentiate sin1x

    ddx(sin1x)=11x2

    Final Derivative

    dydx=(sinx)x[log(sinx)+xcotx]+11x2


    Question 9

    Differentiate w.r.t. x:

    y=xsinx+(sinx)cosx

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xsinx,v=(sinx)cosx

    Part 1: Differentiate u=xsinx

    Take log on both sides:

    logu=sinxlogx

    Differentiate:

    1ududx=cosxlogx+sinx1x

    So:

    dudx=xsinx(cosxlogx+sinxx)

    Part 2: Differentiate v=(sinx)cosx

    Take log:

    logv=cosxlog(sinx)

    Differentiate (product rule):

    1vdvdx=sinxlog(sinx)+cosxcosxsinx
    =sinxlog(sinx)+cosxcotx

    So:dvdx=(sinx)cosx[cosxcotxsinxlog(sinx)]

    Final Derivative

    dydx=xsinx(cosxlogx+sinxx)+(sinx)cosx[cosxcotxsinxlog(sinx)]


    Question 10

    Differentiate w.r.t. x:

    y=xxcosx+x2+1x21

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xxcosx,v=x2+1x21

    Part 1: Differentiate u=xxcosx

    Take log both sides:

    logu=xcosxlogx

    Differentiate:

    Left side:

    1ududx

    Right side (product rule):

    ddx[xcosxlogx]=cosxlogx+x(sinx)logx+xcosx1x

    =cosxlogxxsinxlogx+cosx

    =cosx(logx+1)xsinxlogx

    So:

    dudx=xxcosx[cosx(logx+1)xsinxlogx]

    Part 2: Differentiate v=x2+1x21

    Use quotient rule:

    v=(x21)(2x)(x2+1)(2x)(x21)2

    =2x(x21x21)(x21)2

    =2x(2)(x21)2

    =4x(x21)2

    Final Derivative

    dydx=xxcosx[cosx(logx+1)xsinxlogx]+4x(x21)2


    Question 11 

    Differentiate w.r.t. x:

    y=(xcosx)x+(xsinx)1/x

    Solution

    Part 1: Let

    u=(xcosx)x

    Taking log:

    logu=xlog(xcosx)

    Differentiate:

    1ududx=log(xcosx)+x1xcosx(cosxxsinx)

    =log(xcosx)+cosxxsinxxcosx

    =log(xcosx)+1xtanx

    Thus:

    dudx=(xcosx)x[log(xcosx)+1xtanx]

    Part 2: Let

    v=(xsinx)1/x

    Taking log:

    logv=1xlog(xsinx)

    Differentiate:

    1vdvdx=1x2log(xsinx)+1xsinx+xcosxxsinx
    =log(xsinx)x2+sinx+xcosxx2sinx

    =log(xsinx)x2+1x2+cosxxsinx

    Thus:

    dvdx=(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]

    Answer

    dydx=(xcosx)x[log(xcosx)+1xtanx]+(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]


    Question 12

    Differentiate with respect to x:

    xy+yx=1

    This is an implicit function (y also depends on x), so we will use implicit differentiation + logarithmic differentiation.

    Solution :

    Differentiate both sides w.r.t. 

    x:

    Step 1: Differentiate xy

    Write:

    xy=eylogx

    Differentiate:

    ddx(xy)=xyddx(ylogx)

    =xy(logxdydx+yx)

    Step 2: Differentiate yx

    Write:

    yx=exlogy

    Differentiate:

    ddx(yx)=yxddx(xlogy)
    =yx(logy+x1ydydx)

    =yx(logy+xydydx)

    Step 3: Differentiate RHS

    ddx(1)=0

    Step 4: Combine all terms

    xy(logxdydx+yx)+yx(logy+xydydx)=0

    Now collect dydx terms together:

    xylogxdydx+yxxydydx=xyyxyxlogy

    Factor out dydx:

    dydx(xylogx+yxxy)=(yxyx+yxlogy)

    Final Answer

    dydx=(yxyx+yxlogy)xylogx+xyyx

    Or more neatly:

    dydx=(yxxy+yxlogy)xylogx+xyyx


    Question 13

    Differentiate w.r.t. x:

    yx=xy

    This is an implicit relation involving both x and y, so we will use logarithmic implicit differentiation.

    Solution 

    Given:

    yx=xy

    Take natural log on both sides:

    log(yx)=log(xy)

    Apply log rule: log(ab)=bloga

    xlogy=ylogx

    Differentiate both sides w.r.t. x

    Left side:

    ddx(xlogy)=1logy+x1ydydx

    Right side:

    ddx(ylogx)=dydxlogx+y1x

    Arrange terms

    logy+xydydx=logxdydx+yx

    Bring all dydx terms to one side:

    xydydxlogxdydx=yxlogy

    Factor out dydx:

    dydx(xylogx)=yxlogy

    Final Answer

    dydx=yxlogyxylogx


    QUESTION 14

    Differentiate with respect to x:

    (cosx)y=(cosy)x

    Solution:

    Take logarithm on both sides:

    log((cosx)y)=log((cosy)x)

    Using the rule log(ab)=bloga:

    ylog(cosx)=xlog(cosy)

    Differentiate both sides w.r.t. x:

    Left side:

    ddx[ylog(cosx)]=dydxlog(cosx)+y1cosx(sinx)

    =dydxlog(cosx)ytanx

    Right side:

    ddx[xlog(cosy)]=1log(cosy)+x1cosy(siny)dydx

    =log(cosy)xtanydydx

    Rearranging terms:

    dydxlog(cosx)(xtanydydx)=log(cosy)+ytanx

    dydx(log(cosx)+xtany)=log(cosy)+ytanx

    dydx=log(cosy)+ytanxlog(cosx)+xtany


    QUESTION 15

    Differentiate w.r.t. x:

    xy=exy

    This is an implicit function, so we differentiate both sides w.r.t. x.

    Solution :

    Differentiate both sides:

    Left side

    ddx(xy)=xdydx+y

    (using product rule)

    Right side

    ddx(exy)=exyddx(xy)=exy(1dydx)

    Form the equation

    xdydx+y=exy(1dydx)

    Expand RHS:

    xdydx+y=exyexydydx

    Bring dydx terms together:

    xdydx+exydydx=exyy

    Factor out dydx:

    dydx(x+exy)=exyy

    dydx=exyyx+exy

    Since from the given equation:

    xy=exy

    Replace exy in the derivative:

    dydx=xyyx+xy

    Factor numerator and denominator:

    =y(x1)x(1+y)


    QUESTION 16

    Find the derivative of the function

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)

    and hence find f(1).

    SOLUTION 

    Take logarithm on both sides

    logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)

    Differentiate w.r.t. x:

    f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8

    Multiply both sides by f(x):

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Final derivative 

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Now find f(1)

    Substitute x=1:

    First compute f(1):

    f(1)=(1+1)(1+12)(1+14)(1+18)=2222=16

    Now compute the bracket part:

    11+1+211+1+4131+1+8171+1
    =12+22+42+82

    =12+1+2+4=12+7=152

    Therefore:

    f(1)=f(1)152

    f(1)=16152=815=120

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]
    f(1)=120


    QUESTION 17

    Differentiate the function:

    y=(x25x+8)(x3+7x+9)by:

    (i) Product rule

    (ii) Expanding the product

    (iii) Logarithmic differentiation

    and check that all answers are the same.

    (i) DIFFERENTIATION BY PRODUCT RULE

    Let:

    u=x25x+8,v=x3+7x+9

    u=2x5,v=3x2+7

    Using product rule:

    y=uv+uv

    y=(2x5)(x3+7x+9)+(x25x+8)(3x2+7)


    (ii) DIFFERENTIATION BY EXPANDING FIRST

    Expand:y=(x25x+8)(x3+7x+9)

    Multiply:

    =x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)

    =x5+7x3+9x25x435x245x+8x3+56x+72

    Combine like terms:

    y=x55x4+15x326x2+11x+72

    Differentiate term-wise:

    y=5x420x3+45x252x+11


    (iii) BY LOGARITHMIC DIFFERENTIATION

    y=(x25x+8)(x3+7x+9)

    Take log:

    logy=log(x25x+8)+log(x3+7x+9)

    Differentiate:

    yy=2x5x25x+8+3x2+7x3+7x+9

    Multiply by y:

    y=(x25x+8)(x3+7x+9)[2x5x25x+8+3x2+7x3+7x+9]

    Simplify (cancel terms):

    y=(2x5)(x3+7x+9)+(3x2+7)(x25x+8)


    QUESTION 18

    If u,v,w are functions of x, prove that:

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (i) By repeated application of the product rule

    Let:

    y=uvw

    First consider:

    y=(uv)w

    Differentiate using product rule:

    dydx=d(uv)dxw+(uv)dwdx

    Now apply product rule again to d(uv)dx:

    d(uv)dx=dudxv+udvdx

    Substitute back:

    dydx=(dudxv+udvdx)w+uvdwdx

    Distribute w:

    dydx=dudxvw+udvdxw+uvdwdx

    Result (Method 1 final statement)

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (ii) By logarithmic differentiation

    Given:

    y=uvw

    Take logarithm on both sides:

    logy=logu+logv+logw

    Differentiate:

    1ydydx=1ududx+1vdvdx+1wdwdx

    Multiply both sides by y=uvw:

    dydx=uvw(1ududx+1vdvdx+1wdwdx)

    Distribute:

    dydx=vwdudx+uwdvdx+uvdwdx

    Final Answer

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    This verifies the required identity by both methods.

    Conclusion

    Yes, both methods give the same derivative result:

    ddx(uvw)=uvw+uvw+uvw