Exercise-5.5, Class 12th, Maths, Chapter 5, NCERT

Question 1

Differentiate the following function w.r.t. x:

y=cosxcos2xcos3x

Solution

Given:

y=cosxcos2xcos3x

This is a product of three functions.
Use product rule:

(uvw)=uvw+uvw+uvw

Let:

u=cosx,v=cos2x,w=cos3x

Then:

u=sinx,v=2sin2x,w=3sin3x

Applying product rule:

y=uvw+uvw+uvw
y=(sinx)(cos2x)(cos3x)+(cosx)(2sin2x)(cos3x)

+(cosx)(cos2x)(3sin3x)
y=sinxcos2xcos3x2cosxsin2xcos3x3cosxcos2xsin3x


Question 2

Differentiate the following w.r.t. x:

y=(x1)(x2)(x3)(x4)(x5)

Solution 

Rewrite using exponent form:

y=((x1)(x2)(x3)(x4)(x5))1/2

Taking log on both sides (log differentiation method):

logy=12[log(x1)+log(x2)log(x3)log(x4)log(x5)]

Differentiate w.r.t. x:

1ydydx=12[1x1+1x21x31x41x5]

Multiply both sides by y:

dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]

Final Answer 

dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]


 

Question 3

Differentiate w.r.t. x:

y=(logx)cosx

Solution :

Take natural logarithm on both sides:

logy=cosxlog(logx)

Differentiate both sides w.r.t. x:

Left side:

1ydydx

Right side (product rule):

ddx(cosxlog(logx))=sinxlog(logx)+cosx1logx1x

So:

1ydydx=sinxlog(logx)+cosxxlogx

Multiply both sides by y:

dydx=y[sinxlog(logx)+cosxxlogx]

Substitute y=(logx)cosx:

dydx=(logx)cosx[cosxxlogxsinxlog(logx)]


Question 4

Differentiate w.r.t. x:

y=xx2sinx

Solution :

The second term is simple to differentiate.
The first term xx requires logarithmic differentiation.

Let:

u=xx

Taking log on both sides:

logu=xlogx

Differentiate w.r.t. x:

Left side:1ududx

Right side (product rule):

ddx(xlogx)=1logx+x1x=logx+1

So:

1ududx=logx+1
dudx=xx(logx+1)

Now differentiate the whole expression:

Given:y=xx2sinx

dydx=xx(logx+1)2cosx


Question 5

Differentiate w.r.t. x:

y=(x+3)2(x+4)3(x+5)4

Solution

Taking logarithm on both sides:

logy=2log(x+3)+3log(x+4)+4log(x+5)

Differentiate both sides w.r.t. x:

Left side:

1ydydx

Right side:

21x+3+31x+4+41x+5

So:1ydydx=2x+3+3x+4+4x+5

Multiply both sides by y:

dydx=(x+3)2(x+4)3(x+5)4(2x+3+3x+4+4x+5)


Question 6

Differentiate w.r.t. x:

y=(1+1x)(1+1x2)(1+1x3)

Solution 

Take logarithm on both sides:

logy=log(1+1x)+log(1+1x2)+log(1+1x3)

Differentiate both sides w.r.t. x:

Left side:1ydydx

Right side (chain rule):

ddxlog(1+1x)=11+1x(1x2)=1x(x+1)

Similarly:

ddxlog(1+1x2)=11+1x2(2x3)=2x2(x2+1)

ddxlog(1+1x3)=11+1x3(3x4)=3x3(x3+1)

So:

1ydydx=1x(x+1)2x2(x2+1)3x3(x3+1)

Multiply both sides by y:

dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]

Final Answer

dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]


Question 7

Differentiate w.r.t. x:

y=(logx)x+xlogx

Solution :

Since the expression is the sum of two terms, differentiate them separately.

Part 1: Differentiate u=(logx)x

Take logarithm on both sides:

logu=xlog(logx)

Differentiate:

Left side:1ududx

Right side (product rule):

ddx[xlog(logx)]=log(logx)+x1logx1x=log(logx)+1logx

So:

dudx=(logx)x[log(logx)+1logx]

Part 2: Differentiate v=xlogx

Let:v=xlogx

Take logarithm:

logv=logxlogx=(logx)2

Differentiate:

Left side:1vdvdx

Right side:

2logx1x=2logx

Thus:

dvdx=xlogx2logxx

Combine (since y=u+v)

dydx=(logx)x[log(logx)+1logx]+xlogx2logxx


Question 8

Differentiate w.r.t. x:

y=(sinx)x+sin1x

Solution

Part 1: Differentiate (sinx)x

Let

u=(sinx)x

Take logarithm:

logu=xlog(sinx)

Differentiate both sides:

Left side:1ududx

Right side (product rule):

ddx[xlog(sinx)]=log(sinx)+x1sinxcosx

=log(sinx)+xcotx

So:dudx=(sinx)x[log(sinx)+xcotx]

Part 2: Differentiate sin1x

ddx(sin1x)=11x2

Final Derivative

dydx=(sinx)x[log(sinx)+xcotx]+11x2


Question 9

Differentiate w.r.t. x:

y=xsinx+(sinx)cosx

Solution 

Split into two parts:

y=u+v

where

u=xsinx,v=(sinx)cosx

Part 1: Differentiate u=xsinx

Take log on both sides:

logu=sinxlogx

Differentiate:

1ududx=cosxlogx+sinx1x

So:

dudx=xsinx(cosxlogx+sinxx)

Part 2: Differentiate v=(sinx)cosx

Take log:

logv=cosxlog(sinx)

Differentiate (product rule):

1vdvdx=sinxlog(sinx)+cosxcosxsinx
=sinxlog(sinx)+cosxcotx

So:dvdx=(sinx)cosx[cosxcotxsinxlog(sinx)]

Final Derivative

dydx=xsinx(cosxlogx+sinxx)+(sinx)cosx[cosxcotxsinxlog(sinx)]


Question 10

Differentiate w.r.t. x:

y=xxcosx+x2+1x21

Solution 

Split into two parts:

y=u+v

where

u=xxcosx,v=x2+1x21

Part 1: Differentiate u=xxcosx

Take log both sides:

logu=xcosxlogx

Differentiate:

Left side:

1ududx

Right side (product rule):

ddx[xcosxlogx]=cosxlogx+x(sinx)logx+xcosx1x

=cosxlogxxsinxlogx+cosx

=cosx(logx+1)xsinxlogx

So:

dudx=xxcosx[cosx(logx+1)xsinxlogx]

Part 2: Differentiate v=x2+1x21

Use quotient rule:

v=(x21)(2x)(x2+1)(2x)(x21)2

=2x(x21x21)(x21)2

=2x(2)(x21)2

=4x(x21)2

Final Derivative

dydx=xxcosx[cosx(logx+1)xsinxlogx]+4x(x21)2


Question 11 

Differentiate w.r.t. x:

y=(xcosx)x+(xsinx)1/x

Solution

Part 1: Let

u=(xcosx)x

Taking log:

logu=xlog(xcosx)

Differentiate:

1ududx=log(xcosx)+x1xcosx(cosxxsinx)

=log(xcosx)+cosxxsinxxcosx

=log(xcosx)+1xtanx

Thus:

dudx=(xcosx)x[log(xcosx)+1xtanx]

Part 2: Let

v=(xsinx)1/x

Taking log:

logv=1xlog(xsinx)

Differentiate:

1vdvdx=1x2log(xsinx)+1xsinx+xcosxxsinx
=log(xsinx)x2+sinx+xcosxx2sinx

=log(xsinx)x2+1x2+cosxxsinx

Thus:

dvdx=(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]

Answer

dydx=(xcosx)x[log(xcosx)+1xtanx]+(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]


Question 12

Differentiate with respect to x:

xy+yx=1

This is an implicit function (y also depends on x), so we will use implicit differentiation + logarithmic differentiation.

Solution :

Differentiate both sides w.r.t. 

x:

Step 1: Differentiate xy

Write:

xy=eylogx

Differentiate:

ddx(xy)=xyddx(ylogx)

=xy(logxdydx+yx)

Step 2: Differentiate yx

Write:

yx=exlogy

Differentiate:

ddx(yx)=yxddx(xlogy)
=yx(logy+x1ydydx)

=yx(logy+xydydx)

Step 3: Differentiate RHS

ddx(1)=0

Step 4: Combine all terms

xy(logxdydx+yx)+yx(logy+xydydx)=0

Now collect dydx terms together:

xylogxdydx+yxxydydx=xyyxyxlogy

Factor out dydx:

dydx(xylogx+yxxy)=(yxyx+yxlogy)

Final Answer

dydx=(yxyx+yxlogy)xylogx+xyyx

Or more neatly:

dydx=(yxxy+yxlogy)xylogx+xyyx


Question 13

Differentiate w.r.t. x:

yx=xy

This is an implicit relation involving both x and y, so we will use logarithmic implicit differentiation.

Solution 

Given:

yx=xy

Take natural log on both sides:

log(yx)=log(xy)

Apply log rule: log(ab)=bloga

xlogy=ylogx

Differentiate both sides w.r.t. x

Left side:

ddx(xlogy)=1logy+x1ydydx

Right side:

ddx(ylogx)=dydxlogx+y1x

Arrange terms

logy+xydydx=logxdydx+yx

Bring all dydx terms to one side:

xydydxlogxdydx=yxlogy

Factor out dydx:

dydx(xylogx)=yxlogy

Final Answer

dydx=yxlogyxylogx


QUESTION 14

Differentiate with respect to x:

(cosx)y=(cosy)x

Solution:

Take logarithm on both sides:

log((cosx)y)=log((cosy)x)

Using the rule log(ab)=bloga:

ylog(cosx)=xlog(cosy)

Differentiate both sides w.r.t. x:

Left side:

ddx[ylog(cosx)]=dydxlog(cosx)+y1cosx(sinx)

=dydxlog(cosx)ytanx

Right side:

ddx[xlog(cosy)]=1log(cosy)+x1cosy(siny)dydx

=log(cosy)xtanydydx

Rearranging terms:

dydxlog(cosx)(xtanydydx)=log(cosy)+ytanx

dydx(log(cosx)+xtany)=log(cosy)+ytanx

dydx=log(cosy)+ytanxlog(cosx)+xtany


QUESTION 15

Differentiate w.r.t. x:

xy=exy

This is an implicit function, so we differentiate both sides w.r.t. x.

Solution :

Differentiate both sides:

Left side

ddx(xy)=xdydx+y

(using product rule)

Right side

ddx(exy)=exyddx(xy)=exy(1dydx)

Form the equation

xdydx+y=exy(1dydx)

Expand RHS:

xdydx+y=exyexydydx

Bring dydx terms together:

xdydx+exydydx=exyy

Factor out dydx:

dydx(x+exy)=exyy

dydx=exyyx+exy

Since from the given equation:

xy=exy

Replace exy in the derivative:

dydx=xyyx+xy

Factor numerator and denominator:

=y(x1)x(1+y)


QUESTION 16

Find the derivative of the function

f(x)=(1+x)(1+x2)(1+x4)(1+x8)

and hence find f(1).

SOLUTION 

Take logarithm on both sides

logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)

Differentiate w.r.t. x:

f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8

Multiply both sides by f(x):

f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

Final derivative 

f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

Now find f(1)

Substitute x=1:

First compute f(1):

f(1)=(1+1)(1+12)(1+14)(1+18)=2222=16

Now compute the bracket part:

11+1+211+1+4131+1+8171+1
=12+22+42+82

=12+1+2+4=12+7=152

Therefore:

f(1)=f(1)152

f(1)=16152=815=120

f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]
f(1)=120


QUESTION 17

Differentiate the function:

y=(x25x+8)(x3+7x+9)by:

(i) Product rule

(ii) Expanding the product

(iii) Logarithmic differentiation

and check that all answers are the same.

(i) DIFFERENTIATION BY PRODUCT RULE

Let:

u=x25x+8,v=x3+7x+9

u=2x5,v=3x2+7

Using product rule:

y=uv+uv

y=(2x5)(x3+7x+9)+(x25x+8)(3x2+7)


(ii) DIFFERENTIATION BY EXPANDING FIRST

Expand:y=(x25x+8)(x3+7x+9)

Multiply:

=x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)

=x5+7x3+9x25x435x245x+8x3+56x+72

Combine like terms:

y=x55x4+15x326x2+11x+72

Differentiate term-wise:

y=5x420x3+45x252x+11


(iii) BY LOGARITHMIC DIFFERENTIATION

y=(x25x+8)(x3+7x+9)

Take log:

logy=log(x25x+8)+log(x3+7x+9)

Differentiate:

yy=2x5x25x+8+3x2+7x3+7x+9

Multiply by y:

y=(x25x+8)(x3+7x+9)[2x5x25x+8+3x2+7x3+7x+9]

Simplify (cancel terms):

y=(2x5)(x3+7x+9)+(3x2+7)(x25x+8)


QUESTION 18

If u,v,w are functions of x, prove that:

ddx(uvw)=dudxvw+udvdxw+uvdwdx

(i) By repeated application of the product rule

Let:

y=uvw

First consider:

y=(uv)w

Differentiate using product rule:

dydx=d(uv)dxw+(uv)dwdx

Now apply product rule again to d(uv)dx:

d(uv)dx=dudxv+udvdx

Substitute back:

dydx=(dudxv+udvdx)w+uvdwdx

Distribute w:

dydx=dudxvw+udvdxw+uvdwdx

Result (Method 1 final statement)

ddx(uvw)=dudxvw+udvdxw+uvdwdx

(ii) By logarithmic differentiation

Given:

y=uvw

Take logarithm on both sides:

logy=logu+logv+logw

Differentiate:

1ydydx=1ududx+1vdvdx+1wdwdx

Multiply both sides by y=uvw:

dydx=uvw(1ududx+1vdvdx+1wdwdx)

Distribute:

dydx=vwdudx+uwdvdx+uvdwdx

Final Answer

ddx(uvw)=dudxvw+udvdxw+uvdwdx

This verifies the required identity by both methods.

Conclusion

Yes, both methods give the same derivative result:

ddx(uvw)=uvw+uvw+uvw

 

 

 

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.