Tag: NCERT class 12th Chapter 5 Exercise 5.6 Maths Solution

  • Exercise-5.6, Class 12th, Maths, Chapter 5, NCERT

    If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx.

    Question 1

    If x and y are connected parametrically by the equations:

    x=2at2,y=at4

    Find dydx without eliminating the parameter.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=ddt(2at2)=4at
    dydt=ddt(at4)=4at3

    Now apply the formula:

    dydx=dydtdxdt
    dydx=4at34at=t2

    Final Answer

    dydx=t2


    Question 2

    Ifx=acosθ,y=bcosθ

    find dydx.

    Solution

    Differentiate w.r.t. θ:

    dxdθ=asinθ
    dydθ=bsinθ

    Apply:

    dydx=dydθdxdθ
    dydx=bsinθasinθ

    dydx=ba

    Final Answer

    dydx=ba


    Question 3

    Ifx=sint,y=cos2t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=cost

    dydt=ddt(cos2t)=2sin2t

    Apply parametric derivative formula:

    dydx=dydtdxdt
    dydx=2sin2tcost

    Now use identity:

    sin2t=2sintcost

    So:dydx=2(2sintcost)cost
    dydx=4sint


    Question 4

    Ifx=4t,y=4t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=4
    dydt=ddt(4t)=4t2

    Now apply:

    dydx=dydtdxdt
    dydx=4t24
    dydx=1t2


    Question 5

    Ifx=cosθcos2θ,y=sinθsin2θ

    find dydx.

    Solution

    Differentiate both equations with respect to θ:

    Differentiate x

    dxdθ=ddθ(cosθ)ddθ(cos2θ)
    =sinθ(sin2θ)(2)
    =sinθ+2sin2θ

    Differentiate y

    dydθ=ddθ(sinθ)ddθ(sin2θ)
    =cosθ(2cos2θ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=cosθ2cos2θsinθ+2sin2θ


    Question 6

    Ifx=a(θsinθ),y=a(1+cosθ)

    find dydx.

    Solution

    Differentiate both x and y with respect to θ:

    Differentiate x

    dxdθ=a(ddθ(θ)ddθ(sinθ))
    =a(1cosθ)

    Differentiate y

    dydθ=addθ(1+cosθ)
    =a(0sinθ)
    =asinθ

    Apply the formula:

    dydx=dydθdxdθ
    dydx=asinθa(1cosθ)
    dydx=sinθ1cosθ

    Use identity:

    1cosθ=2sin2θ2,sinθ=2sinθ2cosθ2
    dydx=2sinθ2cosθ22sin2θ2
    =cosθ2sinθ2
    =cotθ2


    Question 7

    If

    x=sin3tcos2t,y=cos3tcos2t

    Solution 

    Rewrite x and y as:

    x=sin3t(cos2t)1/2,y=cos3t(cos2t)1/2

    Divide y by x:

    yx=cos3tsin3t=cot3t

    Take cube root:

    (yx)1/3=cottLet:

    u=tant=(xy)1/3Differentiate implicitly:

    sec2tdtdx=13(xy)2/3yxdydxy2

    dydx=cot3t


    Question 8

    Ifx=a(cost+logtant2),y=asint

    find dydx.

    Solution 

    Differentiate both x and y with respect to t.

    Differentiate y

    y=asint

    dydt=acost

    Differentiate x

    x=a(cost+logtant2)

    dxdt=a(sint+ddtlogtant2)

    Now recall the identity:

    ddt(logtant2)=1sint

    So:

    dxdt=a(sint+1sint)
    dxdt=a(sin2t+1sint)
    dxdt=a(1sin2tsint)
    dxdt=a(cos2tsint)
    dxdt=acos2tcsct

    Now apply parametric formula

    dydx=dydtdxdtdydx=acostacos2tcsctCancel a:

    dydx=costsintcos2t

    dydx=sintsect

    dydx=tant


    Question 9

    If

    x=asecθ,y=btanθ

    find dydx.

    Solution

    Differentiate both with respect to θ:

    Differentiate x

    dxdθ=asecθtanθ

    Differentiate y

    dydθ=bsec2θ

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=bsec2θasecθtanθ
    dydx=bsecθatanθ
    dydx=basecθtanθUse identity:

    secθtanθ=cscθThus:

    dydx=bacscθ


    Question 10

    If

    x=a(cosθ+θsinθ),y=a(sinθθcosθ)

    find dydx.

    Solution 

    Differentiate x and y with respect to θ.

    Differentiate x

    x=a(cosθ+θsinθ)

    Apply product rule to θsinθ:

    dxdθ=a(sinθ+sinθ+θcosθ)

    dxdθ=a(θcosθ)

    Differentiate y

    y=a(sinθθcosθ)
    dydθ=a(cosθ(cosθθsinθ))

    dydθ=a(θsinθ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=aθsinθaθcosθ

    Cancel aθ:

    dydx=sinθcosθ
    dydx=tanθ


    Question

    Ifx=asin1t,y=acos1t

    show that

    dydx=yx

    Solution 

    First rewrite expressions using exponent rules.

    x=(asin1t)1/2=a12sin1t
    y=(acos1t)1/2=a12cos1t

    Differentiate w.r.t. t using log differentiation:

    Differentiate x

    logx=12(sin1t)loga

    Differentiate:

    1xdxdt=12loga11t2

    dxdt=xloga21t2

    Differentiate y

    logy=12(cos1t)loga

    Differentiate:

    1ydydt=12loga11t2

    dydt=yloga21t2

    Now apply parametric derivative formula

    dydx=dy/dtdx/dt
    dydx=yloga21t2xloga21t2

    Cancel common factors:

    dydx=yx