Exercise-5.6, Class 12th, Maths, Chapter 5, NCERT

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx.

Question 1

If x and y are connected parametrically by the equations:

x=2at2,y=at4

Find dydx without eliminating the parameter.

Solution

Differentiate both equations with respect to parameter t:

dxdt=ddt(2at2)=4at
dydt=ddt(at4)=4at3

Now apply the formula:

dydx=dydtdxdt
dydx=4at34at=t2

Final Answer

dydx=t2


Question 2

Ifx=acosθ,y=bcosθ

find dydx.

Solution

Differentiate w.r.t. θ:

dxdθ=asinθ
dydθ=bsinθ

Apply:

dydx=dydθdxdθ
dydx=bsinθasinθ

dydx=ba

Final Answer

dydx=ba


Question 3

Ifx=sint,y=cos2t

find dydx.

Solution

Differentiate both equations with respect to parameter t:

dxdt=cost

dydt=ddt(cos2t)=2sin2t

Apply parametric derivative formula:

dydx=dydtdxdt
dydx=2sin2tcost

Now use identity:

sin2t=2sintcost

So:dydx=2(2sintcost)cost
dydx=4sint


Question 4

Ifx=4t,y=4t

find dydx.

Solution

Differentiate both equations with respect to parameter t:

dxdt=4
dydt=ddt(4t)=4t2

Now apply:

dydx=dydtdxdt
dydx=4t24
dydx=1t2


Question 5

Ifx=cosθcos2θ,y=sinθsin2θ

find dydx.

Solution

Differentiate both equations with respect to θ:

Differentiate x

dxdθ=ddθ(cosθ)ddθ(cos2θ)
=sinθ(sin2θ)(2)
=sinθ+2sin2θ

Differentiate y

dydθ=ddθ(sinθ)ddθ(sin2θ)
=cosθ(2cos2θ)

Apply parametric derivative formula

dydx=dydθdxdθ
dydx=cosθ2cos2θsinθ+2sin2θ


Question 6

Ifx=a(θsinθ),y=a(1+cosθ)

find dydx.

Solution

Differentiate both x and y with respect to θ:

Differentiate x

dxdθ=a(ddθ(θ)ddθ(sinθ))
=a(1cosθ)

Differentiate y

dydθ=addθ(1+cosθ)
=a(0sinθ)
=asinθ

Apply the formula:

dydx=dydθdxdθ
dydx=asinθa(1cosθ)
dydx=sinθ1cosθ

Use identity:

1cosθ=2sin2θ2,sinθ=2sinθ2cosθ2
dydx=2sinθ2cosθ22sin2θ2
=cosθ2sinθ2
=cotθ2


Question 7

If

x=sin3tcos2t,y=cos3tcos2t

Solution 

Rewrite x and y as:

x=sin3t(cos2t)1/2,y=cos3t(cos2t)1/2

Divide y by x:

yx=cos3tsin3t=cot3t

Take cube root:

(yx)1/3=cottLet:

u=tant=(xy)1/3Differentiate implicitly:

sec2tdtdx=13(xy)2/3yxdydxy2

dydx=cot3t


Question 8

Ifx=a(cost+logtant2),y=asint

find dydx.

Solution 

Differentiate both x and y with respect to t.

Differentiate y

y=asint

dydt=acost

Differentiate x

x=a(cost+logtant2)

dxdt=a(sint+ddtlogtant2)

Now recall the identity:

ddt(logtant2)=1sint

So:

dxdt=a(sint+1sint)
dxdt=a(sin2t+1sint)
dxdt=a(1sin2tsint)
dxdt=a(cos2tsint)
dxdt=acos2tcsct

Now apply parametric formula

dydx=dydtdxdtdydx=acostacos2tcsctCancel a:

dydx=costsintcos2t

dydx=sintsect

dydx=tant


Question 9

If

x=asecθ,y=btanθ

find dydx.

Solution

Differentiate both with respect to θ:

Differentiate x

dxdθ=asecθtanθ

Differentiate y

dydθ=bsec2θ

Apply parametric derivative formula

dydx=dydθdxdθ
dydx=bsec2θasecθtanθ
dydx=bsecθatanθ
dydx=basecθtanθUse identity:

secθtanθ=cscθThus:

dydx=bacscθ


Question 10

If

x=a(cosθ+θsinθ),y=a(sinθθcosθ)

find dydx.

Solution 

Differentiate x and y with respect to θ.

Differentiate x

x=a(cosθ+θsinθ)

Apply product rule to θsinθ:

dxdθ=a(sinθ+sinθ+θcosθ)

dxdθ=a(θcosθ)

Differentiate y

y=a(sinθθcosθ)
dydθ=a(cosθ(cosθθsinθ))

dydθ=a(θsinθ)

Apply parametric derivative formula

dydx=dydθdxdθ
dydx=aθsinθaθcosθ

Cancel aθ:

dydx=sinθcosθ
dydx=tanθ


Question

Ifx=asin1t,y=acos1t

show that

dydx=yx

Solution 

First rewrite expressions using exponent rules.

x=(asin1t)1/2=a12sin1t
y=(acos1t)1/2=a12cos1t

Differentiate w.r.t. t using log differentiation:

Differentiate x

logx=12(sin1t)loga

Differentiate:

1xdxdt=12loga11t2

dxdt=xloga21t2

Differentiate y

logy=12(cos1t)loga

Differentiate:

1ydydt=12loga11t2

dydt=yloga21t2

Now apply parametric derivative formula

dydx=dy/dtdx/dt
dydx=yloga21t2xloga21t2

Cancel common factors:

dydx=yx

 

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.