Tag: NCERT class 12th Chapter 5 Exercise 5.7 maths solutions

  • Exercise-5.7, Class 12th, Maths, Chapter 5, NCERT


    Find the second order derivatives of the functions given in Exercises 1 to 10.

    Q1. y=x2+3x+2

    Solution

    dydx=2x+3
    d2ydx2=2


    Q2. y=x20

    Solution

    dydx=20x19
    d2ydx2=380x18


    Q3. y=xcosx

    Solution

    Using product rule:

    dydx=cosxxsinx

    Now differentiate again:

    d2ydx2=sinx(sinx+xcosx)
    d2ydx2=2sinxxcosx


    Q4. y=logx

    Solution

    dydx=1x
    d2ydx2=1x2


    Q5. y=x3logx

    Solution

    dydx=3x2logx+x2
    d2ydx2=6xlogx+5x


    Q6. y=exsin5x

    Solution

    dydx=ex(sin5x+5cos5x)
    d2ydx2=ex(24sin5x+10cos5x)


    Q7. y=e6xcos3x

    Solutiondydx=e6x(6cos3x3sin3x)
    d2ydx2=e6x(27cos3x36sin3x)


    Q8. y=tan1x

    Solutiondydx=11+x2
    d2ydx2=2x(1+x2)2


    Q9. y=log(logx)

    Solutiondydx=1xlogx
    d2ydx2=logx+1x2(logx)2


    Q10. y=sin(logx)

    Solutiondydx=cos(logx)x
    d2ydx2=cos(logx)sin(logx)x2


    Q11. If y=5cosx3sinx, show that d2ydx2+y=0

    Solution

    dydx=5sinx3cosx
    d2ydx2=5cosx+3sinx

    Now,d2ydx2+y=(5cosx+3sinx)+(5cosx3sinx)

    d2ydx2+y=0

    Hence proved