ProTeacher
dydx=2x+3d2ydx2=2
dydx=20x19d2ydx2=380x18
Using product rule:
dydx=cosx−xsinx
Now differentiate again:
d2ydx2=−sinx−(sinx+xcosx)d2ydx2=−2sinx−xcosx
dydx=1xd2ydx2=−1x2
dydx=3x2logx+x2d2ydx2=6xlogx+5x
dydx=ex(sin5x+5cos5x)d2ydx2=ex(−24sin5x+10cos5x)
dydx=−5sinx−3cosxd2ydx2=−5cosx+3sinx
Now,d2ydx2+y=(−5cosx+3sinx)+(5cosx−3sinx)
d2ydx2+y=0
Hence proved