Exercise-5.7, Class 12th, Maths, Chapter 5, NCERT


Find the second order derivatives of the functions given in Exercises 1 to 10.

Q1. y=x2+3x+2

Solution

dydx=2x+3
d2ydx2=2


Q2. y=x20

Solution

dydx=20x19
d2ydx2=380x18


Q3. y=xcosx

Solution

Using product rule:

dydx=cosxxsinx

Now differentiate again:

d2ydx2=sinx(sinx+xcosx)
d2ydx2=2sinxxcosx


Q4. y=logx

Solution

dydx=1x
d2ydx2=1x2


Q5. y=x3logx

Solution

dydx=3x2logx+x2
d2ydx2=6xlogx+5x


Q6. y=exsin5x

Solution

dydx=ex(sin5x+5cos5x)
d2ydx2=ex(24sin5x+10cos5x)


Q7. y=e6xcos3x

Solutiondydx=e6x(6cos3x3sin3x)
d2ydx2=e6x(27cos3x36sin3x)


Q8. y=tan1x

Solutiondydx=11+x2
d2ydx2=2x(1+x2)2


Q9. y=log(logx)

Solutiondydx=1xlogx
d2ydx2=logx+1x2(logx)2


Q10. y=sin(logx)

Solutiondydx=cos(logx)x
d2ydx2=cos(logx)sin(logx)x2


Q11. If y=5cosx3sinx, show that d2ydx2+y=0

Solution

dydx=5sinx3cosx
d2ydx2=5cosx+3sinx

Now,d2ydx2+y=(5cosx+3sinx)+(5cosx3sinx)

d2ydx2+y=0

Hence proved

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.