Tag: NCERT class 12th Chapter 6 Exercise 6.2 solutions maths

  • Exercise-6.2, Class 12th, Maths, Chapter 6, NCERT

    NOTE – Definition -1 : Let I be an interval contained in the domain of a real-valued function f. Then f is said to be

    (i) increasing on I
    x1<x2f(x1)<f(x2)for all x1,x2I
    (ii) decreasing on I
    x1<x2f(x1)>f(x2)for all x1,x2I
    (iii) constant on I
    f(x)=c for all xI
    where c is a constant.

    Question 1 

    Show that the function given by
    f(x)=3x+17 is increasing on R

    Solution

    Let x1 and x2 be any two real numbers such that

    x1<x2

    Then,

    3x1<3x2(multiplying both sides by 3)

    3x1+17<3x2+17

    f(x1)<f(x2)

    Thus, by Definition 1 (Increasing Function), the function f(x)=3x+17 is strictly increasing on R.


    Question 2

    Show that the function given by

    f(x)=e2x

    is increasing on R.

    Solution

    We have

    f(x)=e2x

    Differentiate with respect to x:

    f(x)=ddx(e2x)=2e2xNow, we know that:

    e2x>0 for all xR

    Therefore,

    f(x)=2e2x>0for all xR

    Since f(x)>0 for every real number x, by, the function f is increasing on R.


    Question 3 

    Show that the function given by f(x)=sinx is
    (a) increasing in (0,π2)
    (b) decreasing in (π2,π)

    Solution

    We have:

    f(x)=sinx

    Differentiate with respect to x:

    f(x)=cosx

    (a) Increasing in (0,π2)

    In the interval (0,π2),

    cosx>0

    Therefore,

    f(x)=cosx>0for every x(0,π2)

    Since f(x)>0 in this interval, by Theorem 1 (Increasing and Decreasing Test),

    f(x)=sinx is increasing in (0,π2)

    (b) Decreasing in (π2,π)

    In the interval (π2,π),

    cosx<0

    Therefore,

    f(x)=cosx<0for every x(π2,π)

    Since f(x)<0 in this interval, by Theorem 1,

    f(x)=sinx is decreasing in (π2,π)


    Question 4 

    Find the intervals in which the function

    f(x)=2x23xis
    (a) increasing
    (b) decreasing

    Solution

    We have:

    f(x)=2x23x

    Differentiate with respect to x:

    f(x)=4x3

    Now set f(x)=0 to find the critical point:

    4x3=0

    x=34

    The point x=34 divides the real line into two intervals:

    (,34)and(34,)

    Check the sign of f(x) in these intervals

    For x<34

    Take any value, say x=0:

    f(0)=4(0)3=3<0

    So f(x)<0 in (,34)

    f(x) is decreasing in (,34)

    For x>34

    Take x=1:f(1)=4(1)3=1>0

    So f(x)>0 in (34,)

    f(x) is increasing in (34,)

    Final Answer

    (a) Increasing in (34,)
    (b) Decreasing in (,34)


    Question 5 

    Find the intervals in which the function

    f(x)=2x33x236x+7is
    (a) increasing
    (b) decreasing

    Solution

    We have:

    f(x)=2x33x236x+7

    Differentiate with respect to x:

    f(x)=6x26x36

    Factorizing:

    f(x)=6(x2x6)

    f(x)=6(x3)(x+2)

    Now set f(x)=0:

    (x3)(x+2)=0x=2,  3

    So the real line is divided into intervals:

    (,2),  (2,3),  (3,)

    Sign of f(x) in each interval

    Interval Sign of (x-3) Sign of (x+2) Sign of f(x) Nature of f(x)
    (,2)
    (+)(+)=+
    Increasing
    (2,3) + ()(+)=
    Decreasing
    (3,) + + (+)(+)=+
    Increasing

    Final Answer

    (a) Increasing in (,2)  and  (3,)
    (b) Decreasing in (2,3)


    Question 6

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:


    (a) f(x)=x2+2x5

    f(x)=2x+2

    Set f(x)=0:

    2x+2=0x=1

    Intervals: (,1) and (1,)

    Pick a test point:

    • For x<1, say x=2:

      f(2)=2(2)+2=2<0Decreasing
    • For x>1, say x=0:

      f(0)=2(0)+2=2>0Increasing

    Answer

    Decreasing on (,1)
    Increasing on (1,)


    (b) f(x)=106x2x2

    f(x)=64x=(4x+6)

    Set f(x)=0:

    4x+6=0x=32

    • For x<32, say x=2:

      f(2)=64(2)=2>0Increasing
    • For x>32, say x=0:

      f(0)=6<0Decreasing

    Answer

    Increasing on (,32)
    Decreasing on (32,)


    (c) f(x)=2x39x212x+1

    f(x)=6x218x12=6(x2+3x+2)

    =6(x+1)(x+2)

    Set f(x)=0x=1,2

    Intervals:

    (,2),  (2,1),  (1,)

    Sign test:

    Interval (x+1) (x+2) f(x) sign Nature
    (,2) –6(+)= – Decreasing
    (2,1) + –6(−)= + Increasing
    (1,) + + –6(+)= – Decreasing

    Answer

    Increasing on (2,1)

    Decreasing on (,2) and (1,)


    (d) f(x)=69xx2

    f(x)=92x

    Set f(x)=0:

    92x=0x=92

    Test sign:

    • x<92: f(x)>0 → Increasing

    • x>92: f(x)<0 → Decreasing

    Answer

    Increasing on (,92)

    Decreasing on (92,)


    (e) f(x)=(x+1)3(x3)3

    f(x)=[(x+1)(x3)]3

    Let g(x)=(x+1)(x3)=x22x3

    f(x)=3[g(x)]2g(x)

    =3(x22x3)2(2x2)

    =6(x22x3)2(x1)

    Critical point at x=1

    Since (x22x3)20 always and is zero only at x=1,3, sign depends on (x1):

    • x<1: f(x)<0 → Decreasing

    • x>1: f(x)>0 → Increasing

    Answer

    Decreasing on (,1)

    Increasing on (1,)


    Question 7

    Show that

    y=log(1+x)2x2+x,x>1

    is an increasing function throughout its domain.

    Solution

    Given:y=log(1+x)2x2+x

    Differentiate with respect to x.

    Step 1: Differentiate each term

    ddx(log(1+x))=11+x

    Now differentiate the second term using quotient rule:

    ddx(2x2+x)=(2+x)22x1(2+x)2

    =4+2x2x(2+x)2=4(2+x)2

    Step 2: Write derivative of y

    y=11+x4(2+x)2

    Step 3: Simplify

    Take LCM (1+x)(2+x)2:

    y=(2+x)24(1+x)(1+x)(2+x)2

    Expand:(2+x)2=x2+4x+4

    So:y=x2+4x+44x4(1+x)(2+x)2

    Simplifying numerator:

    x2+4x+44x4=x2

    Thus:y=x2(1+x)(2+x)2

    Step 4: Check sign of y

    • x20 for all real x

    • For domain x>1, both denominators (1+x) and (2+x)2 are positive

    Therefore:y=x2(1+x)(2+x)20for all x>1

    And equality occurs only at x=0, otherwise positive.

    Conclusion

    y0 for all x>1

    Hence, y=log(1+x)2x2+x is an increasing function throughout its domain


    Question 8

    Find the values of x for which

    is an increasing function.

    Solution

    Given:

    Differentiate with respect to x:

    Factorising:

    Now factor further:

    We want to find where y>0.
    So solve:

    The critical points where the expression changes sign are:

    These points divide the real line into intervals:

    Sign Table

    Interval x x–1 x–2 Sign of y Nature
    (,0) Decreasing
    (0,1) + + Increasing
    (1,2) + + Decreasing
    (2,) + + + + Increasing

    Final Answer

    or


    Question 9

    Prove that

    y=4sinθ2+cosθθ

    is an increasing function of θ in

    [0,π2]

    Solution

    Given:

    y=4sinθ2+cosθθ

    Differentiate with respect to θ:

    Step 1 – Differentiate the first term using quotient rule

    Let:

    u=4sinθ,v=2+cosθ
    u=4cosθ,v=sinθ

    ddθ(uv)=uvuvv2

    Substitute:

    ddθ(4sinθ2+cosθ)=(4cosθ)(2+cosθ)(4sinθ)(sinθ)(2+cosθ)2

    Simplify the numerator:

    =8cosθ+4cos2θ+4sin2θ(2+cosθ)2

    =8cosθ+4(cos2θ+sin2θ)(2+cosθ)2

    Using the identity sin2θ+cos2θ=1:

    =8cosθ+4(2+cosθ)2

    Step 2 – Differentiate second term

    ddθ(θ)=1

    Therefore

    y=8cosθ+4(2+cosθ)21

    Take LCM:

    y=8cosθ+4(2+cosθ)2(2+cosθ)2

    Expand the square:

    (2+cosθ)2=4+4cosθ+cos2θ

    Substitute:

    y=8cosθ+444cosθcos2θ(2+cosθ)2

    Simplify numerator:

    y=4cosθcos2θ(2+cosθ)2

    Factor:

    y=cosθ(4cosθ)(2+cosθ)2

    Check sign of y on [0,π2]

    In this interval:

    • cosθ0

    • 4cosθ>0

    • (2+cosθ)2>0

    Therefore,

    y=cosθ(4cosθ)(2+cosθ)20

    Thus,

    y0for all θ[0,π2]

    So y is an increasing function on this interval.


    Question 10

    Prove that the logarithmic function is increasing on (0,).

    Solution

    Let

    f(x)=logx,x>0

    Differentiate with respect to x:

    f(x)=1x

    Now examine the sign of f(x) over its domain (0,):

    • For all x>0, 1x>0

    Therefore:f(x)>0for all x(0,)

    According to Theorem 1 on Increasing and Decreasing Functions, if

    f(x)>0

    for every x in an interval, then f(x) is increasing in that interval.

    So:

    The function logx is increasing on (0,).


    Question 11

    Prove that the function f(x)=x2x+1 is neither strictly increasing nor strictly decreasing on (1,1).

    Solution

    Given:

    f(x)=x2x+1

    Differentiate with respect to x:

    f(x)=2x1

    Now set f(x)=0 to locate the critical point:

    2x1=0
    x=12

    This point lies inside the interval (1,1).
    So the interval (1,1) is divided into two parts:

    (1,12)and(12,1)

    Test the sign of f(x) in these intervals

    For x(1,12)

    Choose x=0:

    f(0)=2(0)1=1<0

    f(x) is decreasing on (1,12)

    For x(12,1)

    Choose x=34:

    f(34)=2(34)1=321=12>0
    f(x) is increasing on (12,1)


    Question 12

    Which of the following functions are decreasing on

    (0,π2)?

    (A) cosx
    (B) cos2x
    (C) cos3x
    (D) tanx

    Solution

    A function is decreasing if its derivative is negative in the interval.

    Option (A) f(x)=cosx

    f(x)=sinx

    In (0,π2), sinx>0, so

    f(x)=sinx<0cosx is decreasing

    Option (B) f(x)=cos2x

    f(x)=2sin2x

    In (0,π2), 2x(0,π), so sin2x>0, hence

    f(x)=2sin2x<0cos2x is decreasing

    Option (C) f(x)=cos3x

    f(x)=3sin3x

    In (0,π2), 3x(0,3π2), and in this range sin3x>0, so

    f(x)=3sin3x<0cos3x is decreasing

    Option (D) f(x)=tanx

    f(x)=sec2x

    In (0,π2), sec2x>0

    So

    f(x)>0tanx is increasing, not decreasing

    Final Answer

    (A) cosx,  (B) cos2x,  (C) cos3x
    tanx is not decreasing


    Question 13

    On which of the following intervals is the function

    f(x)=x100+sinx1

    decreasing?

    (A) (0,1)
    (B) (π2,π)
    (C) (0,π2)
    (D) None of these

    Solution

    Differentiate f(x):

    f(x)=100x99+cosx

    For f(x) to be decreasing, we need:

    f(x)<0

    Analyze sign of each term

    • 100x99>0 for all x>0, because any positive number raised to any power remains positive.

    • cosx in different intervals:

      • In (0,π2), cosx>0

      • In (π2,π), cosx<0

    So the only interval where f(x) might be negative is:

    (π2,π)

    Check sign in this interval:

    • 100x99 is a very large positive number

    • cosx is negative, but lies between 1 and 0

    Thus:

    f(x)=100x99+cosx>100x991>0

    Therefore, f(x)>0 everywhere on the given intervals.

    So there is no interval from the options where the function is decreasing.

    Final Answer

    (D) None of these


    Question 14

    For what values of a the function

    f(x)=x2+ax+1

    is increasing on [1,2]?

    Solution

    Differentiate f(x) with respect to x:

    f(x)=2x+a

    For f(x) to be increasing on [1,2], we require:

    f(x)0for all x[1,2]

    That is:

    2x+a0

    Now check the minimum value of 2x+a in [1,2].

    Since 2x+a is a linear increasing function of x, the minimum occurs at the left endpoint x=1:

    2(1)+a0

    2+a0

    a2

    Final Answer

    f(x)=x2+ax+1 is increasing on [1,2] when a2


    Question 15

    Let I be any interval disjoint from [1,1]. Prove that the function

    f(x)=x+1xis increasing on I.

    Solution

    Given:f(x)=x+1xDifferentiate with respect to x:

    f(x)=11x2Rewrite:f(x)=x21x2
    f(x)=(x1)(x+1)x2

    We need to determine where f(x)>0.

    Sign Analysis

    • x2>0 for all x0

    • So the sign of f(x) depends on the sign of (x1)(x+1)

    (x1)(x+1)>0

    This product is positive when both factors are positive or both are negative.

    Thus:

    x>1orx<1

    Intervals to Check

    Given: The interval I is disjoint from [1,1].

    So I must lie entirely in one of the following:

    (,1)or(1,)

    In these intervals:

    Interval Sign of (x1) Sign of (x+1) Sign of f(x) Nature
    (,1) + Increasing
    (1,) + + + Increasing

    So,

    f(x)>0on both intervals

    Conclusion

    f(x)>0 everywhere on any interval disjoint from [1,1]

    Therefore,

    f(x)=x+1x is increasing on any such interval I.


    Question 16

    Prove that the function

    f(x)=log(sinx)

    is increasing on (0,π2) and decreasing on (π2,π).

    Solution

    Given:f(x)=log(sinx)

    Differentiate using the chain rule:

    f(x)=1sinxcosx=cotx

    So:f(x)=cotx

    We analyze the sign of f(x) in the given intervals.

    1. In the interval (0,π2)

    In this interval,

    • sinx>0

    • cosx>0

    • Therefore, cotx=cosxsinx>0

    So:

    f(x)>0for all x(0,π2)

    Hence,

    f(x)=log(sinx) is increasing on (0,π2)

    2. In the interval (π2,π)

    In this interval,

    • sinx>0

    • cosx<0

    • Therefore, cotx=cosxsinx<0

    So:f(x)<0for all x(π2,π)

    Hence,

    f(x)=log(sinx) is decreasing on (π2,π)

    Final Answer

    log(sinx) is increasing on (0,π2) and decreasing on (π2,π)


    Question 17

    Prove that the function

    f(x)=logcosx

    is decreasing on (0,π2) and increasing on (3π2,2π).

    Solution

    Given:

    f(x)=logcosx

    Differentiate using the chain rule:

    f(x)=1cosxddx(cosx)

    Derivative of cosx

    ddx(cosx)=cosxcosx(sinx)

    Therefore:

    f(x)=1cosx(cosxcosx)(sinx)

    Simplifying:

    f(x)=sinxcosx

    So:

    f(x)=sinxcosx

    Check sign of f(x)in the given intervals

    1. On (0,π2)

    • sinx>0

    • cosx>0cosx=cosx>0

    So:f(x)=sinxcosx=tanx<0

    Therefore:

    f(x) is decreasing on (0,π2)

    2. On (3π2,2π)

    • sinx<0

    • cosx>0cosx=cosx>0

    So:f(x)=sinxcosx=tanx>0

    (negative of a negative becomes positive)

    Therefore:

    f(x) is increasing on (3π2,2π)

    Final Answer

    logcosx is decreasing on (0,π2) and increasing on (3π2,2π)


    Question 18

    Prove that the function

    f(x)=x33x2+3x100

    is increasing in R (the set of all real numbers).

    Solution

    Differentiate f(x) with respect to x:

    f(x)=3x26x+3

    Factorize:

    f(x)=3(x22x+1)

    f(x)=3(x1)2

    Analyze the sign of f(x)

    • (x1)20 for all xR, since the square of any real number is non-negative.

    • Therefore:

    3(x1)20 for all x

    Thus:

    f(x)0 for all xR

    Since the derivative is never negative and is zero only at a single point x=1, the function does not decrease anywhere.

    Conclusion

    f(x)0 for all real numbers x
    Hence, f(x)=x33x2+3x100 is increasing on R.


    Question 19

    The interval in which

    y=x2ex

    is increasing is:

    (A) (,)
    (B) (2,0)
    (C) (2,)
    (D) (0,2)

    Solution

    Given:

    y=x2ex

    Differentiate using product rule:

    y=(x2)ex+x2(ex)

    y=2xex+x2(ex)

    y=ex(2xx2)

    Factor further:

    y=exx(2x)

    Analyze the sign of y

    y=exx(2x)

    • ex>0 for all real x

    • So the sign of y depends only on x(2x)

    x(2x)>0

    Solve inequality:

    • Product is positive when both factors have the same sign.

    Case 1:

    x>0and2x>0x<2

    So:

    0<x<2

    Case 2 would be:

    x<0and2x<0x>2

    Impossible.

    Therefore, the function is increasing only in:

    (0,2)

    Final Answer

    The function is increasing on (0,2)

    Correct option: (D)