Exercise-6.2, Class 12th, Maths, Chapter 6, NCERT

NOTE – Definition -1 : Let I be an interval contained in the domain of a real-valued function f. Then f is said to be

(i) increasing on I
x1<x2f(x1)<f(x2)for all x1,x2I
(ii) decreasing on I
x1<x2f(x1)>f(x2)for all x1,x2I
(iii) constant on I
f(x)=c for all xI
where c is a constant.

Question 1 

Show that the function given by
f(x)=3x+17 is increasing on R

Solution

Let x1 and x2 be any two real numbers such that

x1<x2

Then,

3x1<3x2(multiplying both sides by 3)

3x1+17<3x2+17

f(x1)<f(x2)

Thus, by Definition 1 (Increasing Function), the function f(x)=3x+17 is strictly increasing on R.


Question 2

Show that the function given by

f(x)=e2x

is increasing on R.

Solution

We have

f(x)=e2x

Differentiate with respect to x:

f(x)=ddx(e2x)=2e2xNow, we know that:

e2x>0 for all xR

Therefore,

f(x)=2e2x>0for all xR

Since f(x)>0 for every real number x, by, the function f is increasing on R.


Question 3 

Show that the function given by f(x)=sinx is
(a) increasing in (0,π2)
(b) decreasing in (π2,π)

Solution

We have:

f(x)=sinx

Differentiate with respect to x:

f(x)=cosx

(a) Increasing in (0,π2)

In the interval (0,π2),

cosx>0

Therefore,

f(x)=cosx>0for every x(0,π2)

Since f(x)>0 in this interval, by Theorem 1 (Increasing and Decreasing Test),

f(x)=sinx is increasing in (0,π2)

(b) Decreasing in (π2,π)

In the interval (π2,π),

cosx<0

Therefore,

f(x)=cosx<0for every x(π2,π)

Since f(x)<0 in this interval, by Theorem 1,

f(x)=sinx is decreasing in (π2,π)


Question 4 

Find the intervals in which the function

f(x)=2x23xis
(a) increasing
(b) decreasing

Solution

We have:

f(x)=2x23x

Differentiate with respect to x:

f(x)=4x3

Now set f(x)=0 to find the critical point:

4x3=0

x=34

The point x=34 divides the real line into two intervals:

(,34)and(34,)

Check the sign of f(x) in these intervals

For x<34

Take any value, say x=0:

f(0)=4(0)3=3<0

So f(x)<0 in (,34)

f(x) is decreasing in (,34)

For x>34

Take x=1:f(1)=4(1)3=1>0

So f(x)>0 in (34,)

f(x) is increasing in (34,)

Final Answer

(a) Increasing in (34,)
(b) Decreasing in (,34)


Question 5 

Find the intervals in which the function

f(x)=2x33x236x+7is
(a) increasing
(b) decreasing

Solution

We have:

f(x)=2x33x236x+7

Differentiate with respect to x:

f(x)=6x26x36

Factorizing:

f(x)=6(x2x6)

f(x)=6(x3)(x+2)

Now set f(x)=0:

(x3)(x+2)=0x=2,  3

So the real line is divided into intervals:

(,2),  (2,3),  (3,)

Sign of f(x) in each interval

Interval Sign of (x-3) Sign of (x+2) Sign of f(x) Nature of f(x)
(,2)
(+)(+)=+
Increasing
(2,3) + ()(+)=
Decreasing
(3,) + + (+)(+)=+
Increasing

Final Answer

(a) Increasing in (,2)  and  (3,)
(b) Decreasing in (2,3)


Question 6

Find the intervals in which the following functions are strictly increasing or strictly decreasing:


(a) f(x)=x2+2x5

f(x)=2x+2

Set f(x)=0:

2x+2=0x=1

Intervals: (,1) and (1,)

Pick a test point:

  • For x<1, say x=2:

    f(2)=2(2)+2=2<0Decreasing
  • For x>1, say x=0:

    f(0)=2(0)+2=2>0Increasing

Answer

Decreasing on (,1)
Increasing on (1,)


(b) f(x)=106x2x2

f(x)=64x=(4x+6)

Set f(x)=0:

4x+6=0x=32

  • For x<32, say x=2:

    f(2)=64(2)=2>0Increasing
  • For x>32, say x=0:

    f(0)=6<0Decreasing

Answer

Increasing on (,32)
Decreasing on (32,)


(c) f(x)=2x39x212x+1

f(x)=6x218x12=6(x2+3x+2)

=6(x+1)(x+2)

Set f(x)=0x=1,2

Intervals:

(,2),  (2,1),  (1,)

Sign test:

Interval (x+1) (x+2) f(x) sign Nature
(,2) –6(+)= – Decreasing
(2,1) + –6(−)= + Increasing
(1,) + + –6(+)= – Decreasing

Answer

Increasing on (2,1)

Decreasing on (,2) and (1,)


(d) f(x)=69xx2

f(x)=92x

Set f(x)=0:

92x=0x=92

Test sign:

  • x<92: f(x)>0 → Increasing

  • x>92: f(x)<0 → Decreasing

Answer

Increasing on (,92)

Decreasing on (92,)


(e) f(x)=(x+1)3(x3)3

f(x)=[(x+1)(x3)]3

Let g(x)=(x+1)(x3)=x22x3

f(x)=3[g(x)]2g(x)

=3(x22x3)2(2x2)

=6(x22x3)2(x1)

Critical point at x=1

Since (x22x3)20 always and is zero only at x=1,3, sign depends on (x1):

  • x<1: f(x)<0 → Decreasing

  • x>1: f(x)>0 → Increasing

Answer

Decreasing on (,1)

Increasing on (1,)


Question 7

Show that

y=log(1+x)2x2+x,x>1

is an increasing function throughout its domain.

Solution

Given:y=log(1+x)2x2+x

Differentiate with respect to x.

Step 1: Differentiate each term

ddx(log(1+x))=11+x

Now differentiate the second term using quotient rule:

ddx(2x2+x)=(2+x)22x1(2+x)2

=4+2x2x(2+x)2=4(2+x)2

Step 2: Write derivative of y

y=11+x4(2+x)2

Step 3: Simplify

Take LCM (1+x)(2+x)2:

y=(2+x)24(1+x)(1+x)(2+x)2

Expand:(2+x)2=x2+4x+4

So:y=x2+4x+44x4(1+x)(2+x)2

Simplifying numerator:

x2+4x+44x4=x2

Thus:y=x2(1+x)(2+x)2

Step 4: Check sign of y

  • x20 for all real x

  • For domain x>1, both denominators (1+x) and (2+x)2 are positive

Therefore:y=x2(1+x)(2+x)20for all x>1

And equality occurs only at x=0, otherwise positive.

Conclusion

y0 for all x>1

Hence, y=log(1+x)2x2+x is an increasing function throughout its domain


Question 8

Find the values of x for which

is an increasing function.

Solution

Given:

Differentiate with respect to x:

Factorising:

Now factor further:

We want to find where y>0.
So solve:

The critical points where the expression changes sign are:

These points divide the real line into intervals:

Sign Table

Interval x x–1 x–2 Sign of y Nature
(,0) Decreasing
(0,1) + + Increasing
(1,2) + + Decreasing
(2,) + + + + Increasing

Final Answer

or


Question 9

Prove that

y=4sinθ2+cosθθ

is an increasing function of θ in

[0,π2]

Solution

Given:

y=4sinθ2+cosθθ

Differentiate with respect to θ:

Step 1 – Differentiate the first term using quotient rule

Let:

u=4sinθ,v=2+cosθ
u=4cosθ,v=sinθ

ddθ(uv)=uvuvv2

Substitute:

ddθ(4sinθ2+cosθ)=(4cosθ)(2+cosθ)(4sinθ)(sinθ)(2+cosθ)2

Simplify the numerator:

=8cosθ+4cos2θ+4sin2θ(2+cosθ)2

=8cosθ+4(cos2θ+sin2θ)(2+cosθ)2

Using the identity sin2θ+cos2θ=1:

=8cosθ+4(2+cosθ)2

Step 2 – Differentiate second term

ddθ(θ)=1

Therefore

y=8cosθ+4(2+cosθ)21

Take LCM:

y=8cosθ+4(2+cosθ)2(2+cosθ)2

Expand the square:

(2+cosθ)2=4+4cosθ+cos2θ

Substitute:

y=8cosθ+444cosθcos2θ(2+cosθ)2

Simplify numerator:

y=4cosθcos2θ(2+cosθ)2

Factor:

y=cosθ(4cosθ)(2+cosθ)2

Check sign of y on [0,π2]

In this interval:

  • cosθ0

  • 4cosθ>0

  • (2+cosθ)2>0

Therefore,

y=cosθ(4cosθ)(2+cosθ)20

Thus,

y0for all θ[0,π2]

So y is an increasing function on this interval.


Question 10

Prove that the logarithmic function is increasing on (0,).

Solution

Let

f(x)=logx,x>0

Differentiate with respect to x:

f(x)=1x

Now examine the sign of f(x) over its domain (0,):

  • For all x>0, 1x>0

Therefore:f(x)>0for all x(0,)

According to Theorem 1 on Increasing and Decreasing Functions, if

f(x)>0

for every x in an interval, then f(x) is increasing in that interval.

So:

The function logx is increasing on (0,).


Question 11

Prove that the function f(x)=x2x+1 is neither strictly increasing nor strictly decreasing on (1,1).

Solution

Given:

f(x)=x2x+1

Differentiate with respect to x:

f(x)=2x1

Now set f(x)=0 to locate the critical point:

2x1=0
x=12

This point lies inside the interval (1,1).
So the interval (1,1) is divided into two parts:

(1,12)and(12,1)

Test the sign of f(x) in these intervals

For x(1,12)

Choose x=0:

f(0)=2(0)1=1<0

f(x) is decreasing on (1,12)

For x(12,1)

Choose x=34:

f(34)=2(34)1=321=12>0
f(x) is increasing on (12,1)


Question 12

Which of the following functions are decreasing on

(0,π2)?

(A) cosx
(B) cos2x
(C) cos3x
(D) tanx

Solution

A function is decreasing if its derivative is negative in the interval.

Option (A) f(x)=cosx

f(x)=sinx

In (0,π2), sinx>0, so

f(x)=sinx<0cosx is decreasing

Option (B) f(x)=cos2x

f(x)=2sin2x

In (0,π2), 2x(0,π), so sin2x>0, hence

f(x)=2sin2x<0cos2x is decreasing

Option (C) f(x)=cos3x

f(x)=3sin3x

In (0,π2), 3x(0,3π2), and in this range sin3x>0, so

f(x)=3sin3x<0cos3x is decreasing

Option (D) f(x)=tanx

f(x)=sec2x

In (0,π2), sec2x>0

So

f(x)>0tanx is increasing, not decreasing

Final Answer

(A) cosx,  (B) cos2x,  (C) cos3x
tanx is not decreasing


Question 13

On which of the following intervals is the function

f(x)=x100+sinx1

decreasing?

(A) (0,1)
(B) (π2,π)
(C) (0,π2)
(D) None of these

Solution

Differentiate f(x):

f(x)=100x99+cosx

For f(x) to be decreasing, we need:

f(x)<0

Analyze sign of each term

  • 100x99>0 for all x>0, because any positive number raised to any power remains positive.

  • cosx in different intervals:

    • In (0,π2), cosx>0

    • In (π2,π), cosx<0

So the only interval where f(x) might be negative is:

(π2,π)

Check sign in this interval:

  • 100x99 is a very large positive number

  • cosx is negative, but lies between 1 and 0

Thus:

f(x)=100x99+cosx>100x991>0

Therefore, f(x)>0 everywhere on the given intervals.

So there is no interval from the options where the function is decreasing.

Final Answer

(D) None of these


Question 14

For what values of a the function

f(x)=x2+ax+1

is increasing on [1,2]?

Solution

Differentiate f(x) with respect to x:

f(x)=2x+a

For f(x) to be increasing on [1,2], we require:

f(x)0for all x[1,2]

That is:

2x+a0

Now check the minimum value of 2x+a in [1,2].

Since 2x+a is a linear increasing function of x, the minimum occurs at the left endpoint x=1:

2(1)+a0

2+a0

a2

Final Answer

f(x)=x2+ax+1 is increasing on [1,2] when a2


Question 15

Let I be any interval disjoint from [1,1]. Prove that the function

f(x)=x+1xis increasing on I.

Solution

Given:f(x)=x+1xDifferentiate with respect to x:

f(x)=11x2Rewrite:f(x)=x21x2
f(x)=(x1)(x+1)x2

We need to determine where f(x)>0.

Sign Analysis

  • x2>0 for all x0

  • So the sign of f(x) depends on the sign of (x1)(x+1)

(x1)(x+1)>0

This product is positive when both factors are positive or both are negative.

Thus:

x>1orx<1

Intervals to Check

Given: The interval I is disjoint from [1,1].

So I must lie entirely in one of the following:

(,1)or(1,)

In these intervals:

Interval Sign of (x1) Sign of (x+1) Sign of f(x) Nature
(,1) + Increasing
(1,) + + + Increasing

So,

f(x)>0on both intervals

Conclusion

f(x)>0 everywhere on any interval disjoint from [1,1]

Therefore,

f(x)=x+1x is increasing on any such interval I.


Question 16

Prove that the function

f(x)=log(sinx)

is increasing on (0,π2) and decreasing on (π2,π).

Solution

Given:f(x)=log(sinx)

Differentiate using the chain rule:

f(x)=1sinxcosx=cotx

So:f(x)=cotx

We analyze the sign of f(x) in the given intervals.

1. In the interval (0,π2)

In this interval,

  • sinx>0

  • cosx>0

  • Therefore, cotx=cosxsinx>0

So:

f(x)>0for all x(0,π2)

Hence,

f(x)=log(sinx) is increasing on (0,π2)

2. In the interval (π2,π)

In this interval,

  • sinx>0

  • cosx<0

  • Therefore, cotx=cosxsinx<0

So:f(x)<0for all x(π2,π)

Hence,

f(x)=log(sinx) is decreasing on (π2,π)

Final Answer

log(sinx) is increasing on (0,π2) and decreasing on (π2,π)


Question 17

Prove that the function

f(x)=logcosx

is decreasing on (0,π2) and increasing on (3π2,2π).

Solution

Given:

f(x)=logcosx

Differentiate using the chain rule:

f(x)=1cosxddx(cosx)

Derivative of cosx

ddx(cosx)=cosxcosx(sinx)

Therefore:

f(x)=1cosx(cosxcosx)(sinx)

Simplifying:

f(x)=sinxcosx

So:

f(x)=sinxcosx

Check sign of f(x)in the given intervals

1. On (0,π2)

  • sinx>0

  • cosx>0cosx=cosx>0

So:f(x)=sinxcosx=tanx<0

Therefore:

f(x) is decreasing on (0,π2)

2. On (3π2,2π)

  • sinx<0

  • cosx>0cosx=cosx>0

So:f(x)=sinxcosx=tanx>0

(negative of a negative becomes positive)

Therefore:

f(x) is increasing on (3π2,2π)

Final Answer

logcosx is decreasing on (0,π2) and increasing on (3π2,2π)


Question 18

Prove that the function

f(x)=x33x2+3x100

is increasing in R (the set of all real numbers).

Solution

Differentiate f(x) with respect to x:

f(x)=3x26x+3

Factorize:

f(x)=3(x22x+1)

f(x)=3(x1)2

Analyze the sign of f(x)

  • (x1)20 for all xR, since the square of any real number is non-negative.

  • Therefore:

3(x1)20 for all x

Thus:

f(x)0 for all xR

Since the derivative is never negative and is zero only at a single point x=1, the function does not decrease anywhere.

Conclusion

f(x)0 for all real numbers x
Hence, f(x)=x33x2+3x100 is increasing on R.


Question 19

The interval in which

y=x2ex

is increasing is:

(A) (,)
(B) (2,0)
(C) (2,)
(D) (0,2)

Solution

Given:

y=x2ex

Differentiate using product rule:

y=(x2)ex+x2(ex)

y=2xex+x2(ex)

y=ex(2xx2)

Factor further:

y=exx(2x)

Analyze the sign of y

y=exx(2x)

  • ex>0 for all real x

  • So the sign of y depends only on x(2x)

x(2x)>0

Solve inequality:

  • Product is positive when both factors have the same sign.

Case 1:

x>0and2x>0x<2

So:

0<x<2

Case 2 would be:

x<0and2x<0x>2

Impossible.

Therefore, the function is increasing only in:

(0,2)

Final Answer

The function is increasing on (0,2)

Correct option: (D)

 

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.