Exercise-6.1, Class 9th, Maths, Chapter 6, NCERT

Q1

In Fig. 6.13, lines AB and CD intersect at . If AOC+BOE=70 and BOD=40, find BOE and reflex COE.

Solution. When two lines intersect, vertically opposite angles are equal. So

AOC=BOD=40.

Given AOC+BOE=70, we get

40+BOE=70    BOE=30

Now BOC is a linear pair with AOC, so

BOC=180AOC=18040=140

COE (the smaller angle between CO and OE) equals COB+BOE=140+30=170
Therefore the reflex COE=360170=190

Answers: BOE=30, reflex COE=190, reflex COE=190.


Q2

In Fig. 6.14, lines XY and MN intersect at O. If POY=90 and a:b=2:3, find c.

Solution. From the figure the rays (in order around O) are OP, OY, ON, OX, OM. Note that OP to OX (via OM) is the right angle 90; more directly,

POX=POM+MOX=a+b=90.

Given a:b=2:3, write a=2k, b=3k. Then 2k+3k=5k=90k=18. Thus

b=3k=54.

Since OM and ON are opposite rays (they lie on the same straight line MN), we have b+c=180. Hence

c=180b=18054=126.

Answer: c=126.


Q3

In Fig. 6.15, PQR=PRQ. Prove that PQS=PRT.

Solution. QS and RT are straight extensions of QR. So at Q,

PQS+PQR=180,

and at R,

PRT+PRQ=180.

Given PQR=PRQ, subtracting from 180° gives

PQS=180PQR=180PRQ=PRT.

Thus PQS=PRT


Q4

In Fig. 6.16, if x+y=w+z, prove that A,O,B are collinear (i.e. AOB is a line).

Solution. The four angles around O (in order) are x,w,z,y.

So

x+w+z+y=360

Given x+y=w+z. Put x+y=w+z=t

Then

t+t=3602t=360t=180.

Thus w+z=180. But w+z is the angle from ray OB to ray OA; since it equals 180, OB and OA are opposite rays, so A,O,B are collinear. Hence AOB is a line.


Q5

In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PRay OS lies between rays OP and OR.

ProveROS=12(QOSPOS).

Solution. Because OR is perpendicular to line PQ,

QOR=90andPOR=90.

Now QOS=QOR+ROS=90+ROS
Also POS=PORROS=90ROS (since OS lies between OP and OR).
Subtract:

QOSPOS=(90+ROS)(90ROS)=2ROS.

Therefore ROS=12(QOSPOS)


Q6

It is given that XYZ=64 and XY is produced to point P. Ray YQ bisects ZYP. Find XYQ and reflex QYP.

Solution. Since XY is produced to P, rays YX and YP are opposite, so

ZYP=180XYZ=18064=116.

Ray YQ bisects ZYP, so each half is 116/2=58.

Thus the small angle QYP=58

Now XYQ is the angle from YX to YQ. Moving from YX to YQ goes through YZ then to YQ, so

XYQ=XYZ+ZYQ=64+58=122.

Reflex QYP is the larger reflex angle at Y corresponding to the small angle 58, so

reflex QYP=36058=302.

Answers: XYQ=122, reflex QYP=302

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.