Exercise-7.2, Class 9th, Maths, Chapter 7, NCERT

Q1.

In an isosceles triangle ABC where AB=AC, the bisectors of angles B and C meet at O. Join A to O.
Prove that:
(i) OB=OC
(ii) AO bisects A

Solution:

Given: AB=AC and OB,OC are angle bisectors of B and C.
To prove: (i) OB=OC, (ii) AO bisects A.

Proof:

  • In ABC, since AB=AC, we have B=C

  • OBC=12B and OCB=12C.
    OBC=OCB because B=C.

  • Hence, in OBC, two angles are equal, so the sides opposite to them are also equal.
    OB=OC

Now, in triangles OAB and OAC:

  • OB=OC (proved)

  • AB=AC (given)

  • AO is common.

Therefore, OABOAC by SSS.
BAO=CAO
Thus, AO bisects A


Q2.

In ABC, AD is the perpendicular bisector of BC.
Prove that ABC is isosceles, i.e. AB=AC

Solution:

Given: ADBC and BD=DC
To prove: AB=AC

Proof:
In ABD and ACD:

  • BD=DC (given)

  • ADB=ADC=90 (perpendicular)

  • AD is common.

So, by RHS congruence (Right angle–Hypotenuse–Side),
ABDACD
Hence, AB=AC


Q3.

In an isosceles triangle ABC, AB=AC.
Altitudes BE and CF are drawn from B and C to the opposite equal sides AC and AB.
Prove that BE=CF.

Solution:

Given: AB=AC, BEAC, and CFAB.
To prove: BE=CF

Proof:
In ABE and AFC:

  • AB=AC (given)

  • AEB=AFC=90

  • BAE=CAF (common angle at A).

By A–A–S congruence,
ABEAFC
Hence, BE=CF


Q4.

In ABC, BE and CF are equal altitudes from B and C respectively on sides AC and AB.
Prove that:
(i) ABEACF
(ii) AB=AC

Solution:

Given: BE=CF BEAC CFAB
To prove: (i) ABEACF (ii) AB=AC

Proof:
In ABE and ACF:

  • BE=CF (given)

  • AEB=AFC=90

  • BAE=CAF (common).

So, by A–A–S,
ABEACF
Hence, AB=AC
Thus, ABC is isosceles.


Q5.

ABC and DBC are two isosceles triangles on the same base BC
Prove that ABD=ACD

Solution:

Given: AB=AC and DB=DC
To prove: ABD=ACD

Proof:
Join AD
In ABD and ACD:

  • AB=AC (given)

  • BD=CD (given)

  • AD=AD (common).

So, ABDACD by SSS congruence.
Hence, ABD=ACD


Q6.

ABC is isosceles with AB=AC. Side BA is produced to D such that AD=AB
Prove that BCD=90

Solution:

Given: AB=AC, AD=AB
To prove: BCD=90

Proof:
Since AB=AC
ABC=ACB
Also, since AD=AB
ACD is isosceles ⇒ ADC=ACD

Now, in the straight line AD,
ADC+ADB=180
But ADB is external to ABC, so
ADB=ABC+ACB=2ACB
Hence,

ADC=1802ACB

But in ACD,

ADC+2ACD=180.

Substituting ADC=1802ACB, we get

1802ACB+2ACD=180

ACD=ACB=45
Therefore, in BCD

BCD=180(ACB+ACD)=180(45+45)=90

✅ Hence, BCD=90

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.