Exercise-2.2, Class 12th, Maths, Chapter -2, NCERT

EXERCISE 2.2 — Solutions

1. Prove:

3sin1x=sin1 ⁣(3x4x3),x[12,12]

Solution. Put x=sinθ with θ=sin1x. For x[12,12] we have θ[π6,π6], so 3θ lies in the principal branch [π2,π2]. Using the triple-angle identity sin3θ=3sinθ4sin3θ we get

sin1 ⁣(3x4x3)=sin1 ⁣(sin3θ)=3θ=3sin1x,

as required.


2. Prove:

3cos1x=cos1 ⁣(4x33x),x[12,1]

Solution. Put x=cosϕ with ϕ=cos1x. For x[12,1] we have ϕ[0,π3], so 3ϕ[0,π] (principal branch for cos1). Use cos3ϕ=4cos3ϕ3cosϕ. Then

cos1 ⁣(4x33x)=cos1 ⁣(cos3ϕ)=3ϕ=3cos1x


3. Write in simplest form:

tan1 ⁣(1+x21x),x0

Solution. Put x=tanθ so θ=tan1x and 1+x2=secθ. Then

1+x21x=secθ1tanθ=(1cosθ)/cosθsinθ/cosθ=1cosθsinθ

Now 1cosθ=2sin2(θ/2) and sinθ=2sin(θ/2)cos(θ/2), hence the ratio equals tan(θ/2). Therefore

tan1 ⁣(1+x21x)=θ/2=12tan1x.


4. Write in simplest form:

tan1 ⁣(1cosx1+cosx),0<x<π

Solution. Use the half-angle identity:

1cosx1+cosx=tan2x2

Since 0<x<π, tan(x2)>0, so the square root equals tan(x2). Hence the arctangent is

tan1 ⁣(tanx2)=x2


5. Write in simplest form:

tan1 ⁣(cosxsinxcosx+sinx),π4<x<3π4.

Solution. Divide numerator and denominator by cosx:

cosxsinxcosx+sinx=1tanx1+tanx=tan(π4x)

Principal-value constraints given ensure no ambiguity, so

tan1 ⁣(cosxsinxcosx+sinx)=π4x


6. Write in simplest form:

tan1 ⁣(xa2x2),x<a

Solution. Put x=asinθ (possible since x<a). Then a2x2=acosθ and the ratio is tanθ. Thus the expression equals

tan1(tanθ)=θ=sin1 ⁣(xa)


7. Write in simplest form:

tan1 ⁣(3a2xx3a33ax2),a>0,  a3<x<a3

Solution. Put t=xa. Then the argument becomes

3tt313t2=tan(3α)if t=tanα.

So put x=atanα (allowed in the given range). Then the inner expression is tan3α and the arctangent yields 3α. But α=tan1(x/a). Hence

tan1 ⁣(3a2xx3a33ax2)=3tan1 ⁣(xa)


8. Find the value of:

tan1 ⁣(2cos(2sin112))

Solution. sin112=π6. So 2sin112=π3. Then cos(π3)=12, hence the argument becomes 212=1. Therefore

tan1(1)=π4


9. Find the value of:

tan{12[sin1 ⁣(2x1+x2)+cos1 ⁣(1y21+y2)]},

given x<1, y>0, xy<1

Solution. Use known identities:

sin1 ⁣(2x1+x2)=2tan1x(x<1),

and for y>0,

cos1 ⁣(1y21+y2)=2tan1y.

Hence the bracket is 12[2tan1x+2tan1y]=tan1x+tan1y. Therefore

tan(tan1x+tan1y)=x+y1xy,

using the tangent addition formula and the hypothesis xy<1. So the value is x+y1xy


10. Evaluate: sin1 ⁣(sin2π3).

Solution. sin2π3=32. Principal value of sin1 is in [π2,π2]; the angle in that range with sine 32 is π3. Hence

sin1 ⁣(sin2π3)=π3


11. Evaluate: tan1 ⁣(tan3π4).

Solution. tan3π4=1. Principal value of tan1 lies in (π2,π2); tan1(1)=π4. Thus

tan1 ⁣(tan3π4)=π4


12. Evaluate: tan ⁣(sin135+cot132).

Solution. Let A=sin135. Then sinA=35cosA=45tanA=35/45=34
Let B=cot132. Then cotB=32tanB=23
So

tan(A+B)=tanA+tanB1tanAtanB=34+2313423=9+8121612=171212=176


13. Evaluate (MCQ): cos1 ⁣(cos7π6)= ?

Options: 7π6, 5π6, π3, π6.

Solution. cos7π6=32. The principal value range of cos1 is [0,π]. The angle in [0,π] with cosine 32 is 5π6. So the answer is 5π6.


14. Evaluate (MCQ): sin ⁣(π3sin1(12))= ?

Options: 12, 13, 14, 1

Solution. sin1(12)=π6. So the argument is π3(π6)=π2. Hence sin(π2)=1. So the answer is 1.


15. Evaluate (MCQ): tan13cot1(3)= ?

Options: π, π2, 0, 23

Solution. tan13=π3. For cot1(3) take principal range (0,π). Solve cotθ=3θ=5π/6ince cot(5π/6)=3. Thus

π35π6=π2

So the value is π2.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.