Exercise-5.2, Class 10th, Maths, Chapter 5, NCERT

Exercise 5.2 — Solutions 

1. Fill in the blanks (use an=a+(n1)d

(i) a=7,  d=3,  n=8

an=7+(81)3=7+21=28.

(ii) a=18,  n=10,  an=0

0=18+(101)d9d=18d=2.

(iii) d=3,  n=18,  an=5. Find a.

a+(181)(3)=5a51=5a=46.

(iv) a=18.9,  d=2.5,  an=3.6. Find n.

18.9+(n1)2.5=3.6(n1)2.5=22.5n1=9n=10.

(v) a=3.5,  d=0,  n=105.

an=3.5(every term is 3.5).


2. Multiple choice — pick correct option and justify

(i) AP: 10,7,4, so a=10, d=3

a30=10+(301)(3)=1087=77.

Answer: (C) .

(ii) AP: 3,12,2, Here a=3, difference d=2.5

a11=3+102.5=3+25=22.

Answer: (B) .


3. Find missing terms

I solved each box assuming a standard interpretation of the printed problem. One line in the PDF was slightly unclear; where I made an assumption I’ve noted it.

(i) 2,  14,  26
  middle=2+262=14

(ii) 18,  13,  8,  3
Let d=5 (since 1318=5); then next terms are 135=8,  85=3

(iii) (ambiguous in print) — the problem shows 5,  _,  _,  _with a final term If the intended four-term AP is 5,  ?,  ?,  19, then

d=1953=44/93=4427,

so

a2=54427=9127,a3=4727.

(iv) 4,  2,  0,  2,  4,  

Here a1=4, a6=6 so d=(6(4))/5=2

(v) 53,  38,  23,  8,  7,  22

From a2=38 and a6=22 we get 4d=60d=15, so a1=38d=53


4. Which term of 3,8,13,18, is 78?

a=3, d=5

3+(n1)5=785(n1)=75n1=15n=16.

Answer: 16th term.


5. Number of terms

(i) 7,13,19,,205. a=7, d=6

7+(n1)6=2056(n1)=198n=34.

(ii) 18,  15.5,  13,,47 (Interpretation: second term is 1512=15.5)
Then d=15.518=2.5

Solve

18+(n1)(2.5)=47(n1)=652.5=26n=27.


6. Is 150 a term of 11,8,5,2,?

Here a=11, d=3. Solve

11+(n1)(3)=150(n1)=1613=5323,

not an integer.
Answer: No, is not a term.


7. a11=38, a16=73. Find a31.

Let a+10d=38 and a+15d=73. Subtract: 5d=35d=7

Then a=3870=32

a31=a+30d=32+307=32+210=178.


8. AP of 50 terms; a3=12, a50=106. Find a29.

From a+2d=12a=122d. Also a+49d=106. Substitute:

122d+49d=10647d=94d=2, a=124=8.

So a29=8+282=8+56=64


9. a3=4, a9=8. Which term is zero?

a+2d=4, a+8d=86d=12d=2

Then a=42d=8. Solve

8+(n1)(2)=082(n1)=0n=5.

Answer: 5th term is zero.


10. a17 exceeds a10 by 7. Find d.

(a+16d)(a+9d)=77d=7d=1.


11. In AP 3,15,27,39, which term is 132 more than its 54th term?

Here a=3, d=12.

a54=3+5312=639 Need ak=639+132=771. Solve

3+(k1)12=77112(k1)=768k1=64k=65.


12. Two APs have same d. Difference between their 100th terms is 100. What is difference between their 1000th terms?

If APs are a+(n1)d and b+(n1)d, difference at any n is ab. Since difference at n=100 is 100, the difference at n=1000 is also

100.


13. How many three-digit numbers are divisible by 7?

Smallest three-digit divisible by 7: 105. Largest ≤999 divisible by 7: 994. Count:

9941057+1=8897+1=127+1=128.


14. How many multiples of 4 lie between 10 and 250?

Smallest multiple >10 is 12; largest 250 is 248. Count:

248124+1=2364+1=59+1=60.


15. For what value of n are the n-th terms equal for the APs 63,65,67, and 3,10,17,?

First AP: a1=63, d1=2 so an(1)=63+2(n1).
Second AP: a1=3, d2=7 so an(2)=3+7(n1).

Set equal:

63+2(n1)=3+7(n1)61+2n=4+7n5n=65n=13.

Q16. A sum of ₹700 is to be used to give seven cash prizes. Each prize is ₹20 less than the preceding prize. Find all seven prizes.

Let the prizes form an AP with first term a, common difference d=20, number of terms n=7. The sum is

Sn=n2(2a+(n1)d)=700.

Substitute n=7, d=20:

700=72(2a+6(20))700=72(2a120).

Multiply by 2: 1400=7(2a120)200=2a1202a=320a=160.

Thus the seven prizes are

160,  140,  120,  100,  80,  60,  40(in ₹).


Q17. Each section of Class I plants 1 tree, Class II plants 2 trees, …, Class XII plants 12 trees. There are 3 sections in each class. How many trees in total?

Total trees =3×(1+2++12)=312132=378=234.

So 234 trees will be planted.


Q18. A spiral is made of 13 successive semicircles of radii 0.5,1.0,1.5, Find the total length. (Take π=227.)

Length of a semicircle of radius r is 12(2πr)=πr. So total length

L=πk=113rk,rk=0.5+(k1)0.5.

The radii form an AP with a=0.5, d=0.5, n=13. Sum of radii:

rk=132(20.5+(131)0.5)=132(1+6)=1327=912.

Thus

L=π912=227912=22×9114=200214=143 cm.

Total length = 143 cm.


Q19. 200 logs are stacked: bottom row 20 logs, next 19, next 18, … . In how many rows are the 200 logs placed and how many logs in the top row?

This is a finite AP with a=20, d=1. Let number of rows be n and last row have l=a+(n1)d. Sum:

Sn=n2(a+l)=200.

Using l=20(n1)=21n, we get

n2(20+(21n))=n2(41n)=200n(41n)=400.

So n241n+400=0. Discriminant Δ=4124400=16811600=81, Δ=9

n=41±92={25,  16}.

Physically the number of logs in the top row must be non-negative: for n=25 the top row would be 20(251)=4(impossible). So take n=16. Top row has

l=20(161)=2015=5 logs.

Answer: 16 rows, top row has 5 logs.


Q20. Potato race: bucket is at start, first potato is 5 m from bucket, others 3 m apart; 10 potatoes. Competitor picks each potato and returns it to bucket, repeats. Total distance?

Let distances of potatoes from bucket be an AP: a=5, d=3, n=10. Sum of distances to each potato:

i=110di=102(25+(101)3)=5(10+27)=537=185 m.

For each potato the competitor runs to it and back, so total distance =2× (sum of distances) =2×185=370

Total distance = 370 metres.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.