Tag: Exercise class 12th Maths NCERT Solutions

  • Miscellaneous Exercises on Chapter 4, Class 12th, Maths

    Question 1.
    Prove that the determinant

    xsinθcosθsinθx1cosθ1x

    is independent of θ.

    Solution.

    Compute the determinant by expanding along the first row:

    D=xx11xsinθsinθ1cosθx+cosθsinθxcosθ1

    Evaluate each 2×2 determinant:

    xx11x=x((x)(x)11)=x(x21)=x3x,sinθsinθ1cosθx=sinθ((sinθ)x1cosθ)=sinθ(xsinθcosθ)=xsin2θ+sinθcosθ,cosθsinθxcosθ1=cosθ((sinθ)1(x)cosθ)=cosθ(sinθ+xcosθ)=sinθcosθ+xcos2θAdd the three parts:

    D=(x3x)+(xsin2θ+sinθcosθ)+(sinθcosθ+xcos2θ)=x3x+x(sin2θ+cos2θ)+(sinθcosθsinθcosθ)=x3x+x1+0=x3Thus the determinant equals x3, which does not depend on θ

    Question 2.
    Evaluate the determinant

    cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    Solution:

    Let

    D=cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    We will expand along the second row since it has a zero term.

    Step 1: Expansion along second row

    D=(sinβ)(1)2+1cosαsinβsinαsinαsinβcosα

    +(cosβ)(1)2+2cosαcosβsinαsinαcosβcosα

    Simplify the cofactors:

    D=sinβcosαsinβsinαsinαsinβcosα+cosβcosαcosβsinαsinαcosβcosα

    Step 2: Evaluate the 2×2 determinants

    For the first:

    cosαsinβsinαsinαsinβcosα=(cosαsinβ)(cosα)(sinα)(sinαsinβ)

    =sinβ(cos2α+sin2α)=sinβ.

    For the second:

    cosαcosβsinαsinαcosβcosα=(cosαcosβ)(cosα)(sinα)(sinαcosβ)

    =cosβ(cos2α+sin2α)=cosβ.

    Step 3: Substitute back

    D=sinβ(sinβ)+cosβ(cosβ)=sin2β+cos2β=1

     Final Answer:

    D=1

    Question 3.
    If

    A1=(3111565522)andB=(122130021),

    find (AB)1

    Solution:

    We know the property of inverse of a product:

    (AB)1=B1A1

    Step 1: Find B1

    Let

    B=(122130021)

    To find B1, compute by the adjoint method (or via row operations).
    After simplification, we get:

    B1=(326112225)

    Step 2: Compute (AB)1=B1A1

    A1=(3111565522)

    Now multiply B1 and A1:

    (AB)1=(326112225)(3111565522)

    Step 3: Matrix multiplication

    (AB)111=3(3)+2(15)+6(5)=930+30=9,(AB)121=3(1)+2(6)+6(2)=3+1212=3,(AB)131=3(1)+2(5)+6(2)=310+12=5,(AB)211=1(3)+1(15)+2(5)=315+10=2,(AB)221=1(1)+1(6)+2(2)=1+64=1,(AB)231=1(1)+1(5)+2(2)=15+4=0,(AB)311=2(3)+2(15)+5(5)=630+25=1,(AB)321=2(1)+2(6)+5(2)=2+1210=0,(AB)331=2(1)+2(5)+5(2)=210+10=2.

    Step 4: Write the result

    (AB)1=(935210102)

    Final Answer:

    (AB)1=(935210102)

    Question 4.
    Let

    A=(121231115)

    Verify that
    (i) [adjA]1=adj(A1)
    (ii) (A1)1=A


    Answer & proof

    (i) General identity and verification.

    For any invertible square matrix A we have the identity

    adjA=(detA)A1

    Taking inverses on both sides (and using (cM)1=c1M1 for scalar c0) gives

    (adjA)1=((detA)A1)1=(detA)1(A1)1=(detA)1A

    Also for the inverse matrix A1 we have

    adj(A1)=(det(A1))(A1)1

    But det(A1)=(detA)1 and (A1)1=A, so

    adj(A1)=(detA)1A

    Comparing the two expressions we obtain the required equality for any invertible A:

    (adjA)1=adj(A1)

    Verification for the given matrix A.

    Compute detA, adjA and the two sides explicitly:

    detA=5

    One finds

    adjA=(1491941111),A1=15(1491941111)=(14/59/51/59/54/51/51/51/51/5)

    Then

    (adjA)1=(1/detA)A=15(121231115)=(1/52/51/52/53/51/51/51/51)

    And using adj(A1)=(detA1)(A1)1=(detA)1A gives exactly the same matrix. So the identity holds for this A.

     

    (ii):

    Given

    A=(121231115),

    verify that

    (A1)1=A

    Step 1. Find A1

    We already know from earlier computation that

    det(A)=5

    Now, let’s find the adjoint of A:

    Compute cofactors of A:

    Cofactor matrix of A=(1491941111)

    So the adjoint of A is its transpose:

    adj(A)=(1491941111)

    Hence,

    A1=1det(A)adj(A)=15(1491941111)=(1459515954515151515)

    Step 2. Find (A1)1

    By the definition of matrix inverse:

    A1A=I

    Multiplying both sides on the left by (A1)1, we get:

    (A1)1(A1)A=(A1)1I,

    which simplifies to:

    A=(A1)1

    Step 3. Verify numerically

    If you actually take the inverse of A1 (by determinant and adjoint, or by direct computation),
    you’ll get back the original matrix A:

    (A1)1=(121231115)=A

    Final Answer:

    (A1)1=A.

    Question 5.
    Evaluate

    xyx+yyx+yxx+yxy

    Solution:

    Let

    D=xyx+yyx+yxx+yxy

    We will simplify this determinant using column operations.

    Step 1: Simplify columns

    Let’s apply the operation

    C3C3C1C2

    (i.e., replace the third column with C3C1C2)

    Compute the new third column entries:

    • For first row: (x+y)xy=0

    • For second row: xy(x+y)=xyxy=2y

    • For third row: y(x+y)x=yxyx=2x

    So the new determinant becomes:

    D=xy0yx+y2yx+yx2x

    Step 2: Expand along the first row (since it has a zero)

    D=xx+y2yx2xyy2yx+y2x

    Step 3: Compute each 2×2 determinant

    1. For the first one:

    x+y2yx2x=(x+y)(2x)(2y)(x)

    =2x(x+y)+2xy=2x22xy+2xy=2x2.

    1. For the second one:

    y2yx+y2x=y(2x)(2y)(x+y)

    =2xy+2y(x+y)=2xy+2xy+2y2=2y2

    Step 4: Substitute back

    D=x(2x2)y(2y2)=2x32y3=2(x3+y3)

    Final Answer:

    xyx+yyx+yxx+yxy=2(x3+y3).

    Question 6.
    Evaluate

    Solution:

    Let

    We’ll simplify this determinant using row operations.

    Step 1: Simplify rows

    Perform the following operations:

    Compute the new rows:

    • R2=(1,x+y,y)(1,x,y)=(0,y,0)

    • R3=(1,x,x+y)(1,x,y)=(0,0,y)

    So the new determinant becomes:

    Step 2: Expand along the first column

    Final Answer:

    Question 7.
    Solve the system

    {2x+3y+10z=4,4x6y+5z=1,6x+9y20z=2

    Solution (matrix method)

    Put u=1x,  v=1y,  w=1z. Then the system becomes linear in u,v,w:

    2u+3v+10w=4,4u6v+5w=1,6u+9v20w=2

    In matrix form At=b where

    A=(23104656920),t=(uvw),b=(412)

    Solve t=A1b. Doing this (or by Cramer’s rule / row reduction) gives

    t=(uvw)=(121315)

    So

    u=12,  v=13,  w=15

    Convert back to x,y,z:

    x=1u=2,y=1v=3,z=1w=5

    Check

    Substitute (x,y,z)=(2,3,5) into the original equations:

    22+33+105=1+1+2=4,4263+55=22+1=1

    ,62+93205=3+34=2

    all hold.

    Answer: x=2,  y=3,  z=5.

    Question 8.
    If x,y,z are nonzero real numbers, then the inverse of the matrix

    A=(x000y000z)

    is which of the following?

    (A) (x1000y1000z1)


    (B) xyz(x1000y1000z1)


    (C) 1xyz(x000y000z)


    (D) 1xyz(100010001)

    Answer: (A).

    Reason: For a diagonal matrix, the inverse (when all diagonal entries are nonzero) is the diagonal matrix of reciprocals. Check AA1=I:

    (x000y000z)(x1000y1000z1)=(100010001)

    Question 9.
    Let

    Which of the following is true?
    (A) det(A)=0
    (B) det(A)(2,)
    (C) det(A)(2,4)
    (D) det(A)[2,4]

    Solution

    Compute the determinant by expansion along the first row:

    So detA=2(1+sin2θ)

    Since 0sin2θ1, we have

    Thus det(A)[2,4]. The correct choice is (D).

     

     

     

     

  • Exercise-3.2, Class 12th, Maths, Chapter 3 – Matrices, NCERT

    Question 1

    Let

    A=[2432],B=[1325],C=[2534]

    Find:
    (i) A + B  (ii) A − B  (iii) 3A − C  (iv) AB  (v) BA


    Solution

    (i) A + B =
    Add corresponding elements:

    A+B=[2+14+33+(2)2+5]=[3717]

     

    (ii) A − B =

    AB=[21433(2)25]=[1153]

     


    (iii) 3A − C =
    First, find 3A:

    3A=[61296]

    Subtract C:

    3AC=[6(2)1259364]=[8762]


    (iv) AB =

    AB=[2(1)+4(2)2(3)+4(5)3(1)+2(2)3(3)+2(5)]=[626119]

     

    (v) BA =

    BA=[1(2)+3(3)1(4)+3(2)(2)(2)+5(3)(2)(4)+5(2)]=[1110112]


    Final Answers:

    (i)

    A+B=[3717]

    (ii)

    AB=[1153]

    (iii)

    3AC=[8762]

    (iv)

    AB=[626119]

    (v)

    BA=[1110112]


    Question 2

    Compute the following:

    (i)

    [abba]+[abba]

    (ii)

    [a2+b2b2+c2c2+a2a2+b2]+[c2+2ab2bc2ac2ab]

    (iii)

    [148528]+[61251653]+[768024]

    (iv)

    [cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]


    Solution

    (i) Add element-wise:

    =[2a2b02a]


    (ii)

    =[a2+b2+c2+2abb2+c2+2bcc2+a22aca2+b22ab]


    (iii)
    Add element-wise:

    =[14222121915]

     

    (iv)

    =[1111]


    Question 3

    Compute the indicated products:

    (i)

    [abba][abba]

    (ii)

    [234][123]

    (iii)

    [1223][123231]


    Solution

    (i)

    =[a2+b200a2+b2]

    (ii)

    2×1+3×2+4×3=20

    (iii)

    =[3418139]


    Question 4

    If

    A=[215011],  B=[314220],  C=[410312]

    Compute (A + B), (B − C), and verify A + (B − C) = (A + B) − C.


    A + B =

    [509211]

    B − C =

    [124112]

    A + (B − C) =

    [119101]

    (A + B) − C =

    [119101]

    Hence, verified.


    Question 5

    A=[211335625],B=[235114756]

    Compute 3A − 5B


    Step 1:

    3A=[633991518615],5B=[1015255520352530]

    Step 2: Subtract:

    3A5B=[41222445171915]

     

    Question 6

    Simplify:

    [cosxsinxsinxcosx][sinxcosxcosxsinx]

     

    Solution

    Multiply:
    (1,1):

    cosxsinx+sinxcosx=sin(2x)

    Result:

    [sin(2x)00sin(2x)]


    Question 7

    Find X and Y if

    (i)

    X+Y=[7025],XY=[3003]

    (ii)

    2X+3Y=[2340],3X+2Y=[2215]


    Solution

    Case (i):
    Add and subtract:

    2X=(X+Y)+(XY)=[10028]X=[5014]

    2Y=(X+Y)(XY)=[4022]Y=[2011]


    Case (ii):
    Multiply first by 3, second by 2 and subtract:

    (6X+9Y)(6X+4Y)=5Y=[2131410]

    Y=[251351452]

    Substitute in

    2X+3Y=[2340]

    X=[4535252]

     

    Question 8

    Find X, if

    Y=[3214]

    and

    2X+Y=[1032]


    Solution

    Given:

    2X+Y=[1032]

    Substitute Y:

    2X+[3214]=[1032]

    Now, move Y to RHS:

    2X=[1032][3214]=[2242]

    Divide both sides by 2:

    X=[1121]


    Question 9

    Find the values of x and y, if

    2[130x]+[y012]=[5618]


    Step 1: Expand the scalar multiplication

    2[130x]=[2602x]

    So the equation becomes:

    [2602x]+[y012]=[5618]


    Step 2: Add the two matrices on the LHS

    [2+y6+00+12x+2]=[5618]


    Step 3: Compare corresponding elements

    1. From (1,1): 2+y=5y=3

    2. From (2,2): 2x+2=82x=6x=3


    Final Answers:

    x=3,y=3


    Question 10

    Solve for x, y, z, t if

    2[xzyt]+3[1102]=[3546]


    Solution

    Step 1: Multiply 2 and 3 through matrices:

    [2x2z2y2t]+[3306]=[3546]

    Step 2: Add LHS:

    [2x+32z32y2t+6]=[3546]

    Step 3: Equate corresponding elements:

    1. 2x+3=3x=0

    2. 2z3=5z=4

    3. 2y=4y=2

    4. 2t+6=6t=0

    Hence

    x=0,  y=2,  z=4,  t=0


    Question 11

    If

    [x2]+[1y]=[105]

    Find x and y.


    Solution

    Add LHS element-wise:

    [x12+y]=[105]

    Comparing elements:

    x1=10x=11
    2+y=5y=3

    Answer:
    x=11,y=3


    Question 12

    Given equation:

    3[xyzw]=[x612w]+[4x+yz+w3]

    We need to find x  and  y.


    Step 1: Expand the LHS

    3[xyzw]=[3x3y3z3w]


    Step 2: Add the two matrices on RHS

    [x612w]+[4x+yz+w3]=[x+46+x+y1+z+w2w+3]


    Step 3: Equate the LHS and RHS

    [3x3y3z3w]=[x+46+x+y1+z+w2w+3]


    Step 4: Compare corresponding elements

    1. From (1, 1): 3x=x+42x=4x=2.

    2. From (1, 2): 3y=6+x+y2y=6+x2y=6+22y=8y=4.

    3. Other entries (involving z, w) are not required here.


    Final Answer:

    x=2,y=4

    Question 13

    If

    F(x)=[cosxsinx0sinxcosx0001],

    prove that F(x)F(y)=F(x+y)


    Solution

    Compute F(x)F(y):

    F(x)F(y)=[cosxsinx0sinxcosx0001][cosysiny0sinycosy0001]

    Multiply the first two rows:

    Top-left 2×2 block:

    [cosxcosysinxsiny(sinxcosy+cosxsiny)sinxcosy+cosxsinycosxcosysinxsiny]

    But using angle addition identities:

    cos(x+y)=cosxcosysinxsiny
    sin(x+y)=sinxcosy+cosxsiny

    So,

    F(x)F(y)=[cos(x+y)sin(x+y)0sin(x+y)cos(x+y)0001]=F(x+y)

    Hence proved.


    Question 14

    to show that matrix multiplication is not commutative, i.e.

    ABBA.

    Let’s solve step-by-step carefully.


    Given matrices

    A=(5167),B=(2134).


    Step 1: Compute AB

    AB=(5167)(2134).

    Multiply row by column:

    AB=((5)(2)+(1)(3)(5)(1)+(1)(4)(6)(2)+(7)(3)(6)(1)+(7)(4))=(1035412+216+28)=(713334)


    Step 2: Compute BA

    BA=(2134)(5167)

    Multiply:

    BA=((2)(5)+(1)(6)(2)(1)+(1)(7)(3)(5)+(4)(6)(3)(1)+(4)(7))=(10+62+715+243+28)=(1653925)


    Step 3: Compare

    AB=(713334),BA=(1653925).

    Clearly ABB


    Hence proved:
    Matrix multiplication is not commutative in general:

    ABBA.

     

    15. Find A25A+6I, where

    A=(201213110)

    Compute A2:

    A2=(512945414)

    Now 5A=(100510515550)
    and 6I=(600060006)

    Add them:

    A25A+6I=(512945414)+(100510515550)+(600060006)=(11315101410).


    16. If A=(102021203), prove A36A2+7A+2I=0.

    Compute (steps shown succinctly):

    A2=(5082458013),A3=(210341282334055).

    Now form A36A2+7A+2I. Term-by-term:

    • 6A2=(3004812243048078)

    • 7A=(7014014714021)

    • 2I=(200020002)

    Adding A3+(6A2)+7A+2I gives the zero matrix. So the identity holds.


    17.

    Given:

    A=(3242),I=(1001).

    We have to find the scalar k such that

    A2=kA2I.


    Step 1: Compute A2

    A2=(3242)(3242)=(33+(2)43(2)+(2)(2)43+(2)44(2)+(2)(2)).

    Simplify each element:

    A2=(986+41288+4)=(1244)


    Step 2: Write the given relation

    A2=kA2I.

    Substitute A2, A, and I:

    (1244)=k(3242)2(1001).

    Simplify the right-hand side:

    (3k22k4k2k2).


    Step 3: Equate corresponding entries

    {3k2=1,2k=2,4k=4,2k2=4.Now solve any one (they should all give the same k):

    • From the second: 2k=2k=1

    • From the first: 3k2=1k=1

    • Others also give k=1.

    All consistent.


    Final Answer:

    k=1.


    18. If A=(0tan(α2)tan(α2)0) and I is 2×2 identity, show

    I+A=(IA)(cosαsinαsinαcosα)

    (That is the standard Cayley-type relation when A uses tan(α/2)

    Proof sketch (algebraic verification): Put t=tan(α2). 

    Then

    I+A=(1tt1),IA=(1tt1)

    Use the trig identities

    cosα=1t21+t2,sinα=2t1+t2

    Multiply (IA) by the rotation matrix R(α)=(cosαsinαsinαcosα)

    (IA)R(α)=(c+tss+tctc+sts+c),

    substitute c=cosα, s=sinα and the formulas above; each entry simplifies to match I+A=(1tt1). Thus the identity holds.

    (If your printed sign convention for A is different — e.g. the off-diagonal signs reversed — paste the exact matrix and I’ll adapt the algebra.)


    19.

    A trust fund has ` 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

    (a) Rs 1800 (b) Rs 2000

    Answer – 

    A trust fund has ₹30,000 to invest in two types of bonds:

    • Bond 1 → 5 % interest per year

    • Bond 2 → 7 % interest per year

    We must divide ₹30,000 between them so that the annual total interest is:
    (a) ₹ 1 800 (b) ₹ 2 000


    Step 1: Define variables

    Let

    Then:{x+y=300000.05x+0.07y=I

    where I = required interest.


    Step 2: Matrix form

    [110.050.07]A[xy]=[30000I]That is,Ax=b.

    We can find x=A1b


    Compute A1

    For a 2×2 matrix A=[abcd]

    A1=1adbc[dbca]

    Here
    a=1, b=1, c=0.05, d=0.07

    det(A)=(1)(0.07)(1)(0.05)=0.02

    So:

    A1=10.02[0.0710.051]=[3.5502.550].

    Step 3: Multiply to find x and y

    [xy]=A1[30000I]=[3.5502.550][30000I]

    Compute components:

    x=3.5(30000)50I,y=2.5(30000)+50I.

    Simplify:

    x=10500050I,y=75000+50I.

    (a) For I=1800

    x=10500050(1800)=10500090000=15000,
    y=75000+50(1800)=75000+90000=15000.

    (b) For I=2000

    x=10500050(2000)=105000100000=5000,
    y=75000+50(2000)=75000+100000=25000.

    ✅ Final Answers Summary

    Case Required Interest 5 % Bond (x) 7 % Bond (y)
    (a) ₹ 1 800 ₹ 15 000 ₹ 15 000
    (b) ₹ 2 000 ₹ 5 000 ₹ 25 000

    So, by matrix multiplication,

    [xy]=[10500050I75000+50I],

    20. Bookshop: 10 dozen chemistry, 8 dozen physics, 10 dozen economics books; prices ₹80, ₹60, ₹40. Find total receipt.

    First convert dozens to counts: 10 dozen = 120, 8 dozen = 96, 10 dozen = 120. Multiply quantities by unit prices:

    120×80+96×60+120×40=9600+5760+4800=20,160.

    (Matrix form: [120 96 120](806040)=20160


    21. (Multiple choice) With X of order 2×n, Y of order 3×k, Z of order 2×p, W of order n×3, P of order p×k:

    What restriction on n,k,p so that PY+WY is defined?

    • For PY to be defined: P (size p×k) times Y (size 3×k) requires number of columns of P = number of rows of Y, so k=3.

    • For WY to be defined: W (size n×3) times Y (size 3×k) is defined for any n once k is known.

    • For PY and WY to be addable, their resulting orders must match: PY is p×k and WY is n×k. So p=n.

    Thus the restriction is k=3 and p=n.

    Answer: (A) k=3,p=n.


    22. If n=p, then order of 7X5Z where X is 2×n and Z is 2×p?

    If n=p then both X and Z are 2×n. So 7X5Z is of order 2×n. Answer: (B) 2×n.