Exercise-3.2, Class 12th, Maths, Chapter 3 – Matrices, NCERT

Question 1

Let

A=[2432],B=[1325],C=[2534]

Find:
(i) A + B  (ii) A − B  (iii) 3A − C  (iv) AB  (v) BA


Solution

(i) A + B =
Add corresponding elements:

A+B=[2+14+33+(2)2+5]=[3717]

 

(ii) A − B =

AB=[21433(2)25]=[1153]

 


(iii) 3A − C =
First, find 3A:

3A=[61296]

Subtract C:

3AC=[6(2)1259364]=[8762]


(iv) AB =

AB=[2(1)+4(2)2(3)+4(5)3(1)+2(2)3(3)+2(5)]=[626119]

 

(v) BA =

BA=[1(2)+3(3)1(4)+3(2)(2)(2)+5(3)(2)(4)+5(2)]=[1110112]


Final Answers:

(i)

A+B=[3717]

(ii)

AB=[1153]

(iii)

3AC=[8762]

(iv)

AB=[626119]

(v)

BA=[1110112]


Question 2

Compute the following:

(i)

[abba]+[abba]

(ii)

[a2+b2b2+c2c2+a2a2+b2]+[c2+2ab2bc2ac2ab]

(iii)

[148528]+[61251653]+[768024]

(iv)

[cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]


Solution

(i) Add element-wise:

=[2a2b02a]


(ii)

=[a2+b2+c2+2abb2+c2+2bcc2+a22aca2+b22ab]


(iii)
Add element-wise:

=[14222121915]

 

(iv)

=[1111]


Question 3

Compute the indicated products:

(i)

[abba][abba]

(ii)

[234][123]

(iii)

[1223][123231]


Solution

(i)

=[a2+b200a2+b2]

(ii)

2×1+3×2+4×3=20

(iii)

=[3418139]


Question 4

If

A=[215011],  B=[314220],  C=[410312]

Compute (A + B), (B − C), and verify A + (B − C) = (A + B) − C.


A + B =

[509211]

B − C =

[124112]

A + (B − C) =

[119101]

(A + B) − C =

[119101]

Hence, verified.


Question 5

A=[211335625],B=[235114756]

Compute 3A − 5B


Step 1:

3A=[633991518615],5B=[1015255520352530]

Step 2: Subtract:

3A5B=[41222445171915]

 

Question 6

Simplify:

[cosxsinxsinxcosx][sinxcosxcosxsinx]

 

Solution

Multiply:
(1,1):

cosxsinx+sinxcosx=sin(2x)

Result:

[sin(2x)00sin(2x)]


Question 7

Find X and Y if

(i)

X+Y=[7025],XY=[3003]

(ii)

2X+3Y=[2340],3X+2Y=[2215]


Solution

Case (i):
Add and subtract:

2X=(X+Y)+(XY)=[10028]X=[5014]

2Y=(X+Y)(XY)=[4022]Y=[2011]


Case (ii):
Multiply first by 3, second by 2 and subtract:

(6X+9Y)(6X+4Y)=5Y=[2131410]

Y=[251351452]

Substitute in

2X+3Y=[2340]

X=[4535252]

 

Question 8

Find X, if

Y=[3214]

and

2X+Y=[1032]


Solution

Given:

2X+Y=[1032]

Substitute Y:

2X+[3214]=[1032]

Now, move Y to RHS:

2X=[1032][3214]=[2242]

Divide both sides by 2:

X=[1121]


Question 9

Find the values of x and y, if

2[130x]+[y012]=[5618]


Step 1: Expand the scalar multiplication

2[130x]=[2602x]

So the equation becomes:

[2602x]+[y012]=[5618]


Step 2: Add the two matrices on the LHS

[2+y6+00+12x+2]=[5618]


Step 3: Compare corresponding elements

  1. From (1,1): 2+y=5y=3

  2. From (2,2): 2x+2=82x=6x=3


Final Answers:

x=3,y=3


Question 10

Solve for x, y, z, t if

2[xzyt]+3[1102]=[3546]


Solution

Step 1: Multiply 2 and 3 through matrices:

[2x2z2y2t]+[3306]=[3546]

Step 2: Add LHS:

[2x+32z32y2t+6]=[3546]

Step 3: Equate corresponding elements:

  1. 2x+3=3x=0

  2. 2z3=5z=4

  3. 2y=4y=2

  4. 2t+6=6t=0

Hence

x=0,  y=2,  z=4,  t=0


Question 11

If

[x2]+[1y]=[105]

Find x and y.


Solution

Add LHS element-wise:

[x12+y]=[105]

Comparing elements:

x1=10x=11
2+y=5y=3

Answer:
x=11,y=3


Question 12

Given equation:

3[xyzw]=[x612w]+[4x+yz+w3]

We need to find x  and  y.


Step 1: Expand the LHS

3[xyzw]=[3x3y3z3w]


Step 2: Add the two matrices on RHS

[x612w]+[4x+yz+w3]=[x+46+x+y1+z+w2w+3]


Step 3: Equate the LHS and RHS

[3x3y3z3w]=[x+46+x+y1+z+w2w+3]


Step 4: Compare corresponding elements

  1. From (1, 1): 3x=x+42x=4x=2.

  2. From (1, 2): 3y=6+x+y2y=6+x2y=6+22y=8y=4.

  3. Other entries (involving z, w) are not required here.


Final Answer:

x=2,y=4

Question 13

If

F(x)=[cosxsinx0sinxcosx0001],

prove that F(x)F(y)=F(x+y)


Solution

Compute F(x)F(y):

F(x)F(y)=[cosxsinx0sinxcosx0001][cosysiny0sinycosy0001]

Multiply the first two rows:

Top-left 2×2 block:

[cosxcosysinxsiny(sinxcosy+cosxsiny)sinxcosy+cosxsinycosxcosysinxsiny]

But using angle addition identities:

cos(x+y)=cosxcosysinxsiny
sin(x+y)=sinxcosy+cosxsiny

So,

F(x)F(y)=[cos(x+y)sin(x+y)0sin(x+y)cos(x+y)0001]=F(x+y)

Hence proved.


Question 14

to show that matrix multiplication is not commutative, i.e.

ABBA.

Let’s solve step-by-step carefully.


Given matrices

A=(5167),B=(2134).


Step 1: Compute AB

AB=(5167)(2134).

Multiply row by column:

AB=((5)(2)+(1)(3)(5)(1)+(1)(4)(6)(2)+(7)(3)(6)(1)+(7)(4))=(1035412+216+28)=(713334)


Step 2: Compute BA

BA=(2134)(5167)

Multiply:

BA=((2)(5)+(1)(6)(2)(1)+(1)(7)(3)(5)+(4)(6)(3)(1)+(4)(7))=(10+62+715+243+28)=(1653925)


Step 3: Compare

AB=(713334),BA=(1653925).

Clearly ABB


Hence proved:
Matrix multiplication is not commutative in general:

ABBA.

 

15. Find A25A+6I, where

A=(201213110)

Compute A2:

A2=(512945414)

Now 5A=(100510515550)
and 6I=(600060006)

Add them:

A25A+6I=(512945414)+(100510515550)+(600060006)=(11315101410).


16. If A=(102021203), prove A36A2+7A+2I=0.

Compute (steps shown succinctly):

A2=(5082458013),A3=(210341282334055).

Now form A36A2+7A+2I. Term-by-term:

  • 6A2=(3004812243048078)

  • 7A=(7014014714021)

  • 2I=(200020002)

Adding A3+(6A2)+7A+2I gives the zero matrix. So the identity holds.


17.

Given:

A=(3242),I=(1001).

We have to find the scalar k such that

A2=kA2I.


Step 1: Compute A2

A2=(3242)(3242)=(33+(2)43(2)+(2)(2)43+(2)44(2)+(2)(2)).

Simplify each element:

A2=(986+41288+4)=(1244)


Step 2: Write the given relation

A2=kA2I.

Substitute A2, A, and I:

(1244)=k(3242)2(1001).

Simplify the right-hand side:

(3k22k4k2k2).


Step 3: Equate corresponding entries

{3k2=1,2k=2,4k=4,2k2=4.Now solve any one (they should all give the same k):

  • From the second: 2k=2k=1

  • From the first: 3k2=1k=1

  • Others also give k=1.

All consistent.


Final Answer:

k=1.


18. If A=(0tan(α2)tan(α2)0) and I is 2×2 identity, show

I+A=(IA)(cosαsinαsinαcosα)

(That is the standard Cayley-type relation when A uses tan(α/2)

Proof sketch (algebraic verification): Put t=tan(α2). 

Then

I+A=(1tt1),IA=(1tt1)

Use the trig identities

cosα=1t21+t2,sinα=2t1+t2

Multiply (IA) by the rotation matrix R(α)=(cosαsinαsinαcosα)

(IA)R(α)=(c+tss+tctc+sts+c),

substitute c=cosα, s=sinα and the formulas above; each entry simplifies to match I+A=(1tt1). Thus the identity holds.

(If your printed sign convention for A is different — e.g. the off-diagonal signs reversed — paste the exact matrix and I’ll adapt the algebra.)


19.

A trust fund has ` 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

(a) Rs 1800 (b) Rs 2000

Answer – 

A trust fund has ₹30,000 to invest in two types of bonds:

  • Bond 1 → 5 % interest per year

  • Bond 2 → 7 % interest per year

We must divide ₹30,000 between them so that the annual total interest is:
(a) ₹ 1 800 (b) ₹ 2 000


Step 1: Define variables

Let

Then:{x+y=300000.05x+0.07y=I

where I = required interest.


Step 2: Matrix form

[110.050.07]A[xy]=[30000I]That is,Ax=b.

We can find x=A1b


Compute A1

For a 2×2 matrix A=[abcd]

A1=1adbc[dbca]

Here
a=1, b=1, c=0.05, d=0.07

det(A)=(1)(0.07)(1)(0.05)=0.02

So:

A1=10.02[0.0710.051]=[3.5502.550].

Step 3: Multiply to find x and y

[xy]=A1[30000I]=[3.5502.550][30000I]

Compute components:

x=3.5(30000)50I,y=2.5(30000)+50I.

Simplify:

x=10500050I,y=75000+50I.

(a) For I=1800

x=10500050(1800)=10500090000=15000,
y=75000+50(1800)=75000+90000=15000.

(b) For I=2000

x=10500050(2000)=105000100000=5000,
y=75000+50(2000)=75000+100000=25000.

✅ Final Answers Summary

Case Required Interest 5 % Bond (x) 7 % Bond (y)
(a) ₹ 1 800 ₹ 15 000 ₹ 15 000
(b) ₹ 2 000 ₹ 5 000 ₹ 25 000

So, by matrix multiplication,

[xy]=[10500050I75000+50I],

20. Bookshop: 10 dozen chemistry, 8 dozen physics, 10 dozen economics books; prices ₹80, ₹60, ₹40. Find total receipt.

First convert dozens to counts: 10 dozen = 120, 8 dozen = 96, 10 dozen = 120. Multiply quantities by unit prices:

120×80+96×60+120×40=9600+5760+4800=20,160.

(Matrix form: [120 96 120](806040)=20160


21. (Multiple choice) With X of order 2×n, Y of order 3×k, Z of order 2×p, W of order n×3, P of order p×k:

What restriction on n,k,p so that PY+WY is defined?

  • For PY to be defined: P (size p×k) times Y (size 3×k) requires number of columns of P = number of rows of Y, so k=3.

  • For WY to be defined: W (size n×3) times Y (size 3×k) is defined for any n once k is known.

  • For PY and WY to be addable, their resulting orders must match: PY is p×k and WY is n×k. So p=n.

Thus the restriction is k=3 and p=n.

Answer: (A) k=3,p=n.


22. If n=p, then order of 7X5Z where X is 2×n and Z is 2×p?

If n=p then both X and Z are 2×n. So 7X5Z is of order 2×n. Answer: (B) 2×n.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.