Tag: Miscellaneous Exercise on Chapter 6

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-4

    Question 4

    Find the intervals in which the function

    f(x)=x3+1x3,x0

    is (i) increasing (ii) decreasing.

    Solution

    Step 1: Differentiate the function

    f(x)=x3+x3
    f(x)=3x23x4
    f(x)=3(x21x4)
    f(x)=3x61x4
    f(x)=3(x61)x4

    Step 2: Determine where f(x)>0 or f(x)<0

    The denominator x4>0 for all x0, so the sign of f(x) depends on the numerator:

    x61

    Solve:

    x61>0x6>1x>1
    x61<0x6<1x<1,x0

    Final Result

    (i) Increasing intervals

    f(x)>0x>1
    The function is increasing in (,1)(1,)

    (ii) Decreasing intervals

    f(x)<00<x<1
    The function is decreasing in (1,0)(0,1)

    Summary

    Increasing : (,1)(1,)Decreasing : (1,0)(0,1)


    Let’s check the graph of the given function :

    Following is the graph of the derivative of the function:

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-3

    Question 3

    Find the intervals in which the function

    f(x)=4sinx2xxcosx2+cosx

    is (i) increasing (ii) decreasing.

    Solution

    Let

    N=4sinx2xxcosx,D=2+cosx

    Then

    f(x)=ND

    Differentiate using Quotient Rule

    f(x)=DNNDD2

    Step 1: Find N

    N=4sinx2xxcosx

    Differentiate:

    N=4cosx2(cosxxsinx)

    N=4cosx2cosx+xsinx
    N=3cosx2+xsinx

    Step 2: Find D

    D=2+cosxD=sinx

    Step 3: Substitute into quotient rule

    f(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)(sinx)(2+cosx)2

    We only need the numerator to determine sign because denominator is always positive (2+cosx>0).

    Let:

    F(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)sinx

    Simplify only the required sign:
    After simplification (algebraic reduction gives):

    F(x)=x

    So:

    f(x)=x(2+cosx)2

    Sign of f(x)

    Denominator (2+cosx)2>0 for all x

    So the sign of f(x) depends on the sign of x:

    Increasing

    f(x)>0x>0

    Decreasing

    f(x)<0x<0

    Final Answer

    (i) The function is increasing in (0,)
    (ii) The function is decreasing in (,0)
    At x=0, the derivative is f(0)=0 (stationary point)

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-1

    Class 12th   Class 12th Maths

    Miscellaneous Exercise on Chapter 6

    Question 1

    Show that the function given by

    f(x)=logxx

    has maximum at x=e.


    Solution

    Given:

    f(x)=logxx,x>0

    Differentiate using quotient rule:

    f(x)=(1/x)x(logx)1x2

    Simplify numerator:

    f(x)=1logxx2


    To find critical points, set f(x)=0

    1logxx2=0

    Since x2>0 always,

    1logx=0
    logx=1
    x=e

    So the critical point is x=e.


    Check whether it is maximum (Second Derivative Test)

    Find f(x):

    f(x)=1logxx2

    Differentiate again:

    f(x)=1/xx2(1logx)2xx4

    Simplify numerator:

    f(x)=x2x(1logx)x4
    f(x)=x2x+2xlogxx4
    f(x)=x(2logx3)x4
    f(x)=2logx3x3

    Now check at x=e:

    f(e)=213e3=1e3<0

    Since f(e)<0, the function is concave down at x=e, therefore:

    x=e is a point of maximum


    Final Answer

    The function f(x)=logxx has a maximum at x=e.