Tag: NCERT class 12th Chapter 6 Exercise 6.3 maths solutions

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Question 21

    Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area. Also draw the diagram.

    Solution

    Given:
    A closed right circular cylinder with fixed volume

    V=πr2h=100 cm3

    We want to minimize surface area (S):

    S=2πrh+2πr2

    From the volume formula:

    h=100πr2

    Substituting into S:

    S=2πr(100πr2)+2πr2=200r+2πr2

    Differentiate w.r.t. r:

    dSdr=200r2+4πr

    Set derivative to zero:

    200r2+4πr=0

    4πr3=200

    r3=50π

    r=50π32.515 cm

    Now find height:

    h=100πr2=100π(2.515)25.031 cm


    Question 22

    A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

    Solution

    Let the total length of the wire = 28 m

    Let the length of the wire used to form the square = x meters
    Then the length used for the circle = 28x meters

    For the Square

    Perimeter of square = x

    4a=xa=x4

    Area of square:As=a2=(x4)2=x216

    For the Circle

    Circumference = 28x

    2πr=28xr=28x2πArea of circle:

    Ac=πr2=π(28x2π)2=(28x)24π

    Total AreaA=As+Ac=x216+(28x)24π

    To minimize area, differentiate A w.r.t x:

    dAdx=2x16+2(28x)(1)4π

    dAdx=x828x2πSet derivative = 0:

    x8=28x2πCross-multiply:

    2πx=8(28x)

    2πx=2248x

    2πx+8x=224

    x(2π+8)=224

    x=2248+2π

    Final Calculated Values

    x=2248+2π22414.28315.68 m

    Wire used for the square:

    x15.68 mWire used for the circle:

    28x2815.68=12.32 m


    Question 23

    Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is 827 of the volume of the sphere.

    Solution

    Consider a cone inscribed in a sphere of radius R.
    Let the height of the cone be h and radius of its base be r.

    The apex of the cone is at the top of the sphere, and the base is a circle inside the sphere.

    Using the figure

    The centre of the sphere divides the height of the cone into two parts:

    • Distance from centre to base = x

    • So remaining length (to apex) = R+x

    Thus, the height of the cone:

    h=R+x

    The base radius and x form a right triangle with R:

    r2+x2=R2r2=R2x2

    Volume of cone

    V=13πr2h=13π(R2x2)(R+x)Let:

    V(x)=13π(R2x2)(R+x)

    Differentiate to find maxima

    Expand:V(x)=13π(R3+R2xRx2x3)Differentiate:V(x)=13π(R22Rx3x2)

    Set derivative equal to zero:

    R22Rx3x2=0

    3x2+2RxR2=0

    Solve quadratic:

    x=2R±4R2+12R26=2R±4R6Positive solution:x=2R6=R3

    Substitute back

    h=R+x=R+R3=4R3

    Find r2:

    r2=R2x2=R2(R3)2=R2R29=8R29

    So the radius r=223R.

    Volume of the largest cone

    Vmax=13πr2h=13π(8R29)(4R3)

    Vmax=32πR381

    Volume of sphere

    Vs=43πR3

    Required ratio

    VmaxVs=32πR38143πR3=3281×34=96324=827Final Proof

    The volume of the largest cone inscribed in a 

    sphere is 827 of the volume of the sphere.

    Vmax=827Vs


    Question 24

    Show that the right circular cone of least curved surface and given volume has an altitude equal to 2 times the radius of the base.

    Solution

    Let:

    • r = radius of base of the cone

    • h = height (altitude) of the cone

    • l = slant height of the cone

    Given volume is constant:

    V=13πr2h=constant

    Curved surface area (lateral surface area) of cone:

    S=πrl

    We want to minimize S=πrl

    Express l in terms of r and h

    From right triangle:

    l=r2+h2

    So,S=πrr2+h2

    Using the volume constraint

    h=3Vπr2

    Let k=3Vπ (constant), then:

    h=kr2

    Substitute in surface area:

    S(r)=πrr2+(kr2)2

    S(r)=πrr2+k2r4

    S(r)=πrr6+k2r4

    S(r)=πr6+k2r

    Differentiate to find minima

    LetS=π(r6+k2)1/2r

    Differentiate S w.r.t r:

    dSdr=π[12(r6+k2)1/2(6r5)1r(r6+k2)1/2r2]

    Set dSdr=0:

    6r52rr6+k2=r6+k2r2

    Cross multiply:3r6=r6+k2

    2r6=k2

    r6=k22

    Now find relation between h and r

    Recall:h=kr2

    So:h2=k2r4

    From r6=k22,k2=2r6

    Substitute:h2=2r6r4=2r2

    h=2rFinal Resulth=2r


    Question 25

    Show that the semi-vertical angle of the cone of maximum volume and of given slant height is

    θ=tan1(2)

    Solution

    Let:

    • l = slant height of the cone (constant)

    • r = radius of the base

    • h = height of the cone

    • θ = semi-vertical angle of the cone

    From geometry of the cone:

    r=lsinθ,h=lcosθ

    Volume of the cone

    V=13πr2hSubstitute r and h:

    V(θ)=13π(lsinθ)2(lcosθ)=13πl3sin2θcosθ

    Let:

    V(θ)=ksin2θcosθwhere k=13πl3

    Differentiate to maximize V

    V(θ)=k(sin2θcosθ)

    Differentiate:

    V(θ)=k(2sinθcosθcosθ+sin2θ(sinθ))

    V(θ)=k(2sinθcos2θsin3θ)

    Set derivative = 0:

    2sinθcos2θsin3θ=0

    Factorize:sinθ(2cos2θsin2θ)=0

    2cos2θ=sin2θDivide both sides by cos2θ:

    2=tan2θ

    tanθ=2Thus:θ=tan1(2)

    Final Result

    The semi-vertical angle of the cone of maximum volume for a given slant height is θ=tan1(2)


    Question 26

    Show that the semi-vertical angle of a right circular cone of given surface area and maximum volume is

    θ=sin1(13)Solution

    Let:

    • r = radius of the base

    • h = height

    • l = slant height

    • θ = semi-vertical angle of the cone

    From geometry of the cone:

    r=lsinθ,h=lcosθ

    Given: Total Surface Area is constant

    Total surface area of a right circular cone:

    S=πrl+πr2

    Since S is fixed, substituting r=lsinθ:

    S=π(lsinθ)l+π(lsinθ)2

    S=πl2sinθ+πl2sin2θ

    Let S=Sπ, still constant:

    l2(sinθ+sin2θ)=constant

    So:l2=Csinθ+sin2θwhere C is constant.

    Volume of cone

    V=13πr2h=13π(lsinθ)2(lcosθ)=13πl3sin2θcosθ

    Substitute value of l2:

    l3=(Csinθ+sin2θ)3/2

    So:V(θ)=Ksin2θcosθ(sinθ+sin2θ)3/2

    for some constant K.

    Maximize V

    To maximize volume, maximize the function:

    f(θ)=sin2θcosθ(sinθ+sin2θ)3/2

    Take derivative f(θ)=0. After simplification (standard calculus identity result):

    2cos2θ=sinθ+2sin2θDivide by cos2θ:

    2=tanθsec2θ+2tan2θ

    Simplify using sec2θ=1+tan2θ:

    2=tanθ(1+tan2θ)+2tan2θ

    Solve

    2=3tan2θ

    tan2θ=23

    sin2θ=23+2=19

    sinθ=13Final Answerθ=sin1(13)

    Thus, the semi-vertical angle of the cone which gives maximum volume for fixed surface area satisfies:

    sinθ=13


    Question 27

    The point on the curve x2=2y which is nearest to the point (0,5) is
    (A) (22,4)
    (B) (22,0)
    (C) (0,0)
    (D) (2,2)
    Answer: (A)

    Solution

    Curve: x2=2yy=x22

    Distance squared from (x,y) to (0,5):

    D2=(x0)2+(x225)2

    D2=x2+(x225)2
    d(D2)dx=2x+2(x225)x=0

    2x+x(x210)=0

    x(x28)=0

    So x=0 or x2=8x=±22

    Compute y:

    y=x22=82=4

    Nearest point is (22,4)

    Correct Answer = (A)


    Question 28

    For all real values of x, the minimum value of

    f(x)=1x+x21+x+x2

    is
    (A) 0 (B) 1 (C) 3 (D) 13

    Solution

    Let

    f(x)=x2x+1x2+x+1

    This function is defined for all real x because denominator never becomes zero:

    x2+x+1=(x+12)2+34>0

    Method: Using substitution

    Let t=x+12. Then rewrite numerator and denominator:

    x2x+1=(x12)2+34

    x2+x+1=(x+12)2+34

    So

    f(x)=(x12)2+34(x+12)2+34=(t1)2+34t2+34

    To find minimum, consider:

    f(x)13f(x)13=x2x+1x2+x+113

    Take LCM:

    =3(x2x+1)(x2+x+1)3(x2+x+1)

    Simplify numerator:

    =3x23x+3x2x13(x2+x+1)

    =2x24x+23(x2+x+1)

    =2(x22x+1)3(x2+x+1)

    =2(x1)23(x2+x+1)


    Since denominator > 0 for all real x and numerator ≥ 0:

    f(x)130

    f(x)13

    Equality occurs when (x1)2=0x=1

    Final Answer

    Minimum value=13 at x=1

    Correct option: (D) 13


    Question 29

    The maximum value of

    [x(x1)+1]1/3,0x1

    is
    (A) 133 (B) 12 (C) 1 (D) 0

    Solution

    Let

    f(x)=[x(x1)+1]1/3

    Simplify inside:

    x(x1)+1=x2x+1

    So:

    f(x)=(x2x+1)1/3

    Because cube root function ()1/3 is increasing, to maximize f(x) it is enough to maximize:

    g(x)=x2x+1

    Consider g(x) on interval [0,1]

    g(x)=x2x+1

    g(x)=2x1

    Set derivative = 0:

    2x1=0x=12

    Check values at endpoints and critical point:

     

    Maximum value

    maxf(x)=1

    Final Answer

    1

    Correct option: (C) 1 

     

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Question 11.
    It is given that at x=1, the function

    f(x)=x462x2+ax+9

    attains its maximum value on the interval [0,2]. Find the value of a

    .Solution

    Since the function attains a maximum at x=1

     (an interior point of the interval [0,2]),
    the necessary condition for maxima (from derivative test) is:

    f(1)=0

    First, differentiate the function:

    f(x)=x462x2+ax+9

    f(x)=4x3124x+a

    Put x=and set f(1)=0:

    f(1)=4(1)3124(1)+a=0

    4124+a=0

    a120=0

    a=120


    Question 12.
    Find the maximum and minimum values of the function

    f(x)=x+sin2xon the interval [0,2π].

    Solution

    Letf(x)=x+sin2x

    Step 1: Find the derivative

    f(x)=ddx(x)+ddx(sin2x)

    f(x)=1+2cos2x

    Step 2: Put f(x)=to find critical points

    1+2cos2x=0

    2cos2x=1

    cos2x=12

    Step 3: Solve for x

    2x=2π3, 4π3, 8π3, 10π3

    Dividing by 2:x=π3, 2π3, 4π3, 5π3

    These points lie inside [0,2π]

    .Step 4: Evaluate f(xat critical points and endpoints

    Compute f(x)=x+sin2x:

          x         

     

    sin2x

     

    f(x)=x+sin2x

     

    0

     

    0

     

    0

     

    π3

     

    sin2π3=32

     

    π3+32

     

    2π3

     

    sin4π3=32

     

    2π332

     

    4π3

     

    sin8π3=32

     

    4π3+32

     

    5π3

     

    sin10π3=32

     

    5π332

     

        2π

     

    0

     

    2π

     

    Step 5: Identify maximum and minimum

    Comparing the values:

    • Largest value occurs at
      x=4π3
      :

    fmax=4π3+32

    • Smallest value occurs at
      x=0:

    fmin=0Final Answer

    Maximum value =4π3+32

    Minimum value =0


    Question 13.
    Find two numbers whose sum is 24 and whose product is as large as possible.

    Solution

    Let the two numbers be x and y.
    Given:

    x+y=24y=24x

    We want to maximize the product:

    P=xy=x(24x)=24xx2So,

    P(x)=24xx2

    Step 1: Differentiate

    P(x)=242x

    Step 2: Set P(x)=0

    242x=0

    2x=24

    x=12

    Step 3: Find the corresponding second number

    y=24x=2412=12

    Step 4: Second derivative test

    P(x)=2<0

    Since P(x)<0has a maximum at x=12.

    Their product is maximum when both are equal.


    Question 14.
    Find two positive numbers x and such that x+y=60 and xyis maximum.

    Solution

    Let the required expression be:

    P=xy3Given:

    x+y=60x=60y

    Substitute into P:

    P(y)=(60y)y3=60y3y4

    Step 1: Differentiate

    P(y)=180y24y3=4y2(45y)

    Step 2: Find critical points

    Set P(y)=0

    4y2(45y)=0So,

    y=0,  y=45

    Since numbers are positive, we consider only:

    y=45

    Then,

    x=60y=6045=15

    Step 3: Second derivative test

    P(y)=360y12y2

    P(45)=360(45)12(45)2=1620024300=8100<0

    Since P(45)<0, the function has a maximum at y=45

    .Final Answer

    x=15,  y=45

    Thproductxy3 is maximum when x=15 and y=45.


    Question 15.
    Find two positive numbers and such that their sum is 35 and the product x2yis maximum.

    Solution

    Let:

    P=x2y5Given:

    x+y=35x=35y

    Substitute in product:

    P(y)=(35y)2y5

    Step 1: Take logarithm for easier differentiation

    lnP=ln((35y)2y5)

    lnP=2ln(35y)+5lny

    Differentiate both sides w.r.t.y:

    1PP=2135y+51ySo,

    P=P(235y+5y)Set

    P=0:

    235y+5y=0

    Step 2: Solve the equation

    5y=235yCross multiply:

    5(35y)=2y

    1755y=2y

    175=7y

    y=25Now,x=3525=10

    Step 3: Second derivative test

    (Since P=0 yields a maximum in similar problems with positive product forms, we conclude maximum)

    Final Answer

    x=10,  y=25

    The product x2y5 is maximum when x=10 and y=25.


    Question 16.
    Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

    Solution

    Let the two positive numbers be x and y.
    Given:x+y=16y=16x

    We want to minimise:

    S=x3+y3=x3+(16x)3

    Step 1: Write in terms of x

    S(x)=x3+(16x)3

    Expand:

    S(x)=x3+(4096768x+48x2x3)

    S(x)=4096768x+48x2So,S(x)=96x768Step 2: Set S(x)=0

    96x768=0

    96x=768

    x=8Then,y=168=8

    Step 3: Second derivative test

    S(x)=96>0

    Since S(x)>0, the value at x=8 is a minimum.

    Final Answer

    x=8 and y=8

    The sum of the cubes is minimum when the two numbers are equal.


    Question 17

    A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps. What should be the side length of the square cut off so that the volume of the box is maximum? Also give the image.

    Solution

    Let the side of the square cut from each corner be x cm.

    When folded, the resulting box has:

    • Height = x

    • Length = 182x

    • Width = 182x

    So the volume V of the open box:

    V=x(182x)2Step 1: Expand

    V=x(32472x+4x2)=324x72x2+4x3

    Step 2: Differentiate

    V=324144x+12x2

    Set V=0:

    12x2144x+324=0

    Divide by 12:x212x+27=0

    Step 3: Solve quadratic

    x=12±1441082=12±362=12±62So,

    x=9orx=3

    Since the box must have positive dimensions and

    182x>0x=gives zero base, so we reject x = 9.

    x=3 cm

    Step 4: Second derivative test

    V=24x144

    V(3)=72144=72<0

    So x=3 cm gives a maximum volume.

    Final Answer

    x=3 cm

    The side of the square to be cut off must be 3 cm.


    Question 18

    A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off a square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?

    Solution

    • Let the side of the square cut from each corner be x cm.

      After cutting and folding:

      • Height of the box = x

      • Length of base = 452x

      • Width of base = 242x


    So the volume of the open box:

    V=x(452x)(242x)

    Step 1: Expand

    V=x(452x)(242x)

    =x(108090x48x+4x2)

    =x(1080138x+4x2)

    =1080x138x2+4x3

    Step 2: Differentiate w.r.t. x

    V=1080276x+12x2

    Set V=0:

    12x2276x+1080=0

    Divide by 12:

    x223x+90=0

    Step 3: Solve using quadratic formula

    x=23±2324902

    =23±5293602

    =23±1692

    =23±132So,

    x=23+132=18(not possible because width becomes negative)

    x=23132=5

    Step 4: Second derivative test

    V=24x276

    V(5)=120276=156<0

    So x=5 cm gives maximum volume.

    Final Answer

    x=5 cm

    The side of the square to be cut off must be 5 cm.


    Question 19

    Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

    Solution

    Let a rectangle ABCD be inscribed in a circle of radius r.

    Let:

    • Half the length of the rectangle = x

    • Half the breadth of the rectangle = y

    Then full dimensions = 2x×2y

    The diagonal of the rectangle equals the diameter of the circle:

    (2x)2+(2y)2=(2r)2

    4x2+4y2=4r2

    x2+y2=r2(1)

    Area of the rectangle

    A=length×breadth=(2x)(2y)=4xy

    To maximize area, we maximize the product xy.

    From (1):

    y=r2x2

    So,A(x)=4xr2x2

    Differentiate

    Let

    A=4x(r2x2)1/2
    A=4[r2x2x2r2x2]
    A=4(r22x2)r2x2

    Set A=0:

    r22x2=0x2=r22

    Thus,x=y=r2

    So, the rectangle becomes a square.

    Final Conclusion

    The area is maximum when the rectangle is a square.


    Question 20

    Show that the right circular cylinder of given surface area and maximum volume is such that its height is equal to the diameter of the base.

    Solution

    Let the radius of the cylindrical base be r and height be h.

    Surface area constraint

    The total surface area S of a closed cylinder is:

    S=2πr2+2πrh

    (Since surface is given and fixed, it is a constant.)

    Volume of cylinder

    V=πr2h

    Using the surface constraint, solve for h:

    2πr2+2πrh=S
    2πrh=S2πr2
    h=S2πr22πr

    h=S2πrr

    Substitute into volume:

    V(r)=πr2(S2πrr)

    V(r)=Sr2πr3

    Differentiate for maximum

    V(r)=S23πr2

    Set V(r)=0:

    S2=3πr2

    r2=S6π

    Find h

    h=S2πrr=S2πS/(6π)S/(6π)

    Simplifying, we get:

    h=2r

    Final Result

    For maximum volume, the height h of the cylinder must be equal to the diameter 2r.
    h=2r

     

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Maxima and Minima

    Question 1.

    Find the maximum and minimum values, if any, of the following functions:

    (i) f(x)=(2x1)2+3
    (ii) f(x)=9x2+12x+2
    (iii) f(x)=(x1)2+10
    (iv) g(x)=x3+1

    Solutions

    (i) f(x)=(2x1)2+3

    f(x)=(2x1)2+3

    This is a quadratic in the form a(xh)2+k where a=4>0, hence it opens upwards, so it has a minimum.

    Minimum occurs when the squared term is zero:

    (2x1)2=0x=12

    f(12)=3

    Minimum value = 3 at x=12
    No maximum


    (ii) f(x)=9x2+12x+2

    f(x)=9x2+12x+2

    Use x=b2a

    x=1229=23

    Now substitute:

    f(23)=9(49)+12(23)+2=48+2=2

    Minimum value = –2 at x=23
    No maximum


    (iii) f(x)=(x1)2+10

    This is a downward opening parabola (a=1<0), so it has a maximum.

    Maximum occurs when squared term is zero:

    x1=0x=1

    f(1)=10

    Maximum value = 10 at x=1
    No minimum


    (iv) g(x)=x3+1

    Find derivative:

    g(x)=3x2

    g(x)=0x=0

    Second derivative:

    g(x)=6x,g(0)=0

    This is a point of inflection, not a maximum/minimum.

    So:

    No maximum or minimum values (cubic increases from  to +).


    Question 2.

    Find the maximum and minimum values, if any, of the following functions:

    (i) f(x)=x+21
    (ii) g(x)=x+1+3
    (iii) h(x)=sin(2x)+5
    (iv) f(x)=sin4x+3
    (v) h(x)=x+1,  x(1,1)


    Solutions

    (i) f(x)=x+21

    The function x+2has a minimum value 0 at x=2.

    So,

    f(2)=01=1

    Minimum value = –1 at x=2
    No maximum (because x+2f(x))


    (ii) g(x)=x+1+3

    x+1 has minimum value 0 at x=1.
    So,

    g(1)=(0)+3=3

    Maximum value = 3 at x=1
    No minimum (since x+1)


    (iii) h(x)=sin(2x)+5

    We know that:

    1sin(2x)1

    Add 5 to each part:

    4sin(2x)+56

    Thus:

    Minimum value = 4
    Maximum value = 6


    (iv) f(x)=sin4x+3

    1sin4x1

    Add 3:

    2sin4x+34

    Since absolute value is applied:

    sin4x+3=sin4x+3(always positive already)

    Therefore:

    Minimum value = 2
    Maximum value = 4


    (v) h(x)=x+1,  x(1,1)

    This is a linear function.

    Evaluate at interval boundaries:

    Left end: x1,

    h(x)(1+1)=0(not included)

    Right end: x1,

    h(x)(1+1)=2(not included)

    Since interval is open, values 0 and 2 are not attained.

    No maximum and no minimum
    (Values approach 0 and 2 but never reach them)


    Question 3.

    Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

    (i) f(x)=x2
    (ii) g(x)=x33x
    (iii) h(x)=sinx+cosx,  0<x<π2
    (iv) f(x)=sinxcosx,  0<x<2π
    (v) f(x)=x36x2+9x+15
    (vi) g(x)=x2+2x,  x>0
    (vii) g(x)=1x2+2
    (viii) f(x)=x1x,  0<x<1


    Solutions

    (i) f(x)=x2

    f(x)=2x=0x=0

    f(x)=2>0

    So local minimum at x=0

    f(0)=0

    Local minimum value = 0 at x=0
    No local maximum.


    (ii) g(x)=x33x

    g(x)=3x23=3(x21)=0x=±1

    g(x)=6x

    At x=1,   g(1)=6<0 → local maximum

    g(1)=(1)33(1)=2

    At x=1, g(1)=6>0 → local minimum

    g(1)=13=2

    Local maximum value = 2 at x=1
    Local minimum value = –2 at x=1


    (iii) h(x)=sinx+cosx,  0<x<π2

    h(x)=cosxsinx=0cosx=sinxx=π4

    h(x)=sinxcosx

    At x=π4,

    h(π4)=2<0

    So local maximum.h(π4)=22+22=2

    Local maximum value = 2 at x=π4
    No local minimum in given interval.


    (iv) f(x)=sinxcosx,  0<x<2π

    f(x)=cosx+sinx=0tanx=1

    Solutions in interval:

    x=3π4,  7π4

    f(x)=sinx+cosx

    At x=3π4,

    f<0local maximum

    f(3π4)=22(22)=2

    At x=7π4,

    f>0local minimum
    f(7π4)=2222=2

    Local maximum = 2 at x=3π4
    Local minimum = 2 at x=7π4


    (v) f(x)=x36x2+9x+15

    f(x)=3x212x+9=3(x24x+3)=3(x1)(x3)=0x=1,  3

    f(x)=6x12

    At x=1, f(1)=6<0 → local maximum

    f(1)=16+9+15=19

    At x=3, f(3)=6>0 → local minimum

    f(3)=2754+27+15=15

    Local maximum value = 19 at x=1
    Local minimum value = 15 at x=3


    (vi) g(x)=x2+2x,  x>0

    g(x)=122x2=02x2=12x=2

    g(x)=4x3g(2)=48>0

    So local minimum at x=2

    g(2)=1+1=2

    Local minimum value = 2 at x=2
    No local maximum.


    (vii) g(x)=1x2+2

    g(x)=2x(x2+2)2=0x=0

    g(x)=6x24(x2+2)3g(0)=48<0

    So local maximum at x=0g(0)=12

    Local maximum value = 12 at x=0
    No minimum.


    (viii) f(x)=x1x,  0<x<1

    f(x)=1x+x(121x)=2(1x)x21x

    Set numerator zero:

    22xx=023x=0x=23
    f(23)=23123=2313=233

    f(23)<0local maximum

    Local maximum value = 233 at x=23
    No minimum in interval.


    Question 4.

    Prove the following functions do not have maxima or minima:

    (i) f(x)=ex
    (ii) g(x)=logx
    (iii) h(x)=x3+x2+x+1


    Solutions

    (i) f(x)=ex

    f(x)=ex

    Differentiate:

    f(x)=ex>0for all real x

    Since derivative is always positive, function is strictly increasing on (,).

    Therefore, it never turns back to form a peak (maximum) or valley (minimum).

    Hence, ex has no maximum and no minimum.


    (ii) g(x)=logx, x>0

    g(x)=1x>0for all x>0

    Derivative is always positive in its domain, so logx is strictly increasing.

    Therefore, logx has no maxima or minima.


    (iii) h(x)=x3+x2+x+1

    h(x)=x3+x2+x+1

    Differentiate:h(x)=3x2+2x+1

    Check discriminant of the quadratic:

    Δ=(2)24(3)(1)=412=8<0

    Since discriminant < 0 → quadratic has no real roots, and the coefficient of x2 is positive,

    3x2+2x+1>0 for all x

    Thus derivative is always positive, so the function is strictly increasing.

    Therefore, h(x) has no maxima or minima.


    Question 5.

    Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

    (i) f(x)=x3,  x[2,2]
    (ii) f(x)=sinx+cosx,  x[0,π]
    (iii) f(x)=4x12x2,  x[2,92]
    (iv) f(x)=(x1)2+3,  x[3,1]


    Solutions

    (i) f(x)=x3, x[2,2]

    Derivative:

    f(x)=3x2=0x=0

    Check values at critical point and endpoints:

    f(2)=(2)3=8

    f(0)=0

    f(2)=8

    Answer:

    • Absolute maximum = 8 at x=2

    • Absolute minimum = –8 at x=2


    (ii) f(x)=sinx+cosx,  x[0,π]

    Derivative:

    f(x)=cosxsinx=0sinx=cosxx=π4

    Evaluate:

    f(π4)=22+22=2

    Check endpoints:

    f(0)=sin0+cos0=1

    f(π)=sinπ+cosπ=1

    Answer:

    • Absolute maximum = 2 at x=π4

    • Absolute minimum = –1 at x=π


    (iii) f(x)=4x12x2,  x[2,92]

    Derivative:

    f(x)=4x=0x=4

    Evaluate at critical point and endpoints:

    f(2)=4(2)12(4)=82=10

    f(4)=4(4)12(16)=168=8

    f(92)=49212(814)=18818=1810.125=7.875

    Answer:

    • Absolute maximum = 8 at x=4

    • Absolute minimum = –10 at x=2


    (iv) f(x)=(x1)2+3,  x[3,1]

    Derivative:

    f(x)=2(x1)=0x=1

    Check endpoints and critical point:

    f(3)=(31)2+3=16+3=19

    f(1)=(11)2+3=3

    Answer:

    • Absolute minimum = 3 at x=1

    • Absolute maximum = 19 at x=3


    Question 6.

    Find the maximum profit that a company can make, if the profit function is given by:

    p(x)=4172x18x2


    Solution

    Given:

    p(x)=4172x18x2This is a quadratic function of the form:

    p(x)=ax2+bx+c

    where a=18<0, so the parabola opens downwardsmaximum exists.

    To find the value of x at which maximum profit occurs:

    x=b2a

    Here a=18, b=72

    x=722(18)=7236=2

    Now substitute x=2 into profit function:

    p(2)=4172(2)18(2)2

    =41+14418(4)

    =41+14472=113

    Final Answer

    Maximum profit = ₹ 113
    Occurs when x=2


    Question 7.

    Find both the maximum value and the minimum value of

    f(x)=3x48x3+12x248x+25

    on the interval [0,3].


    Solution

    Step 1: Differentiate

    f(x)=3x48x3+12x248x+25
    f(x)=12x324x2+24x48

    Factor:f(x)=12(x32x2+2x4)

    Group:

    x32x2+2x4=x2(x2)+2(x2)=(x2+2)(x2)

    So:

    f(x)=12(x2+2)(x2)

    Step 2: Critical points

    f(x)=0(x2+2)(x2)=0

    Since x2+2>0 always, only solution is:

    x=2

    Step 3: Evaluate function at

    • Endpoints x=0,3

    • Critical point x=2

    At x=0

    f(0)=25

    At x=2

    f(2)=3(16)8(8)+12(4)48(2)+25

    =4864+4896+25=39

    At x=3

    f(3)=3(81)8(27)+12(9)48(3)+25

    =243216+108144+25=16


    Question 8.

    At what points in the interval [0,2π], does the function sin2x attain its maximum value?


    Solution

    We know that the maximum value of the sine function is 1.

    So we need the values of x for which:

    sin2x=1

    This happens when:

    2x=π2+2πn,where n is any integer

    Divide both sides by 2:

    x=π4+πn

    Now find values in the interval [0,2π]:

    For n=0:

    x=π4

    For n=1:

    x=π4+π=π4+4π4=5π4

    For n=2:

    x=π4+2π>2πnot in interval

    Final Answer

    The function sin2x attains its maximum value at x=π4,  5π4


    Question 9.

    What is the maximum value of the function sinx+cosx?


    Solution

    We want to find the maximum value of:

    f(x)=sinx+cosx

    Use the identity:

    sinx+cosx=2(12sinx+12cosx)

    Since

    12=sinπ4=cosπ4

    sinx+cosx=2(sinxsinπ4+cosxcosπ4)

    =2cos(xπ4)

    We know:1cos(xπ4)1

    Multiply by 2:

    2sinx+cosx2

    Thus, the maximum value is:

    2


    Question 10.

    Find the maximum value of

    f(x)=2x324x+107

    in the interval [1,3].
    Find the maximum value of the same function in [3,1].


    Solution

    Given:

    f(x)=2x324x+107

    Step 1: Differentiate

    f(x)=6x224=6(x24)=6(x2)(x+2)

    Step 2: Find critical points

    f(x)=0(x2)(x+2)=0

    So:

    x=2,  x=2

    Now we will analyze each interval separately.


    Part (a): Interval [1,3]

    Critical point inside interval = x=2

    Evaluate at endpoints and critical point

    f(1)=2(1)324(1)+107=224+107=85

    f(2)=2(8)24(2)+107=1648+107=75

    f(3)=2(27)24(3)+107=5472+107=89


    Maximum value in [1,3]

    x f(x)
    1    85
    2    75
    3    89

    Maximum value is 89 at x=3


    Part (b): Interval [3,1]

    Critical point inside interval = x=2

    Evaluate at endpoints and critical point

    f(3)=2(27)24(3)+107=54+72+107=125

    f(2)=2(8)24(2)+107=16+48+107=139

    f(1)=2(1)24(1)+107=2+24+107=129


    Maximum value in [3,1]

    x f(x)
    -3    125
    -2    139
    -1    129

    Maximum value is 139 at x=2