Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

Question 11.
It is given that at x=1, the function

f(x)=x462x2+ax+9

attains its maximum value on the interval [0,2]. Find the value of a

.Solution

Since the function attains a maximum at x=1

 (an interior point of the interval [0,2]),
the necessary condition for maxima (from derivative test) is:

f(1)=0

First, differentiate the function:

f(x)=x462x2+ax+9

f(x)=4x3124x+a

Put x=and set f(1)=0:

f(1)=4(1)3124(1)+a=0

4124+a=0

a120=0

a=120


Question 12.
Find the maximum and minimum values of the function

f(x)=x+sin2xon the interval [0,2π].

Solution

Letf(x)=x+sin2x

Step 1: Find the derivative

f(x)=ddx(x)+ddx(sin2x)

f(x)=1+2cos2x

Step 2: Put f(x)=to find critical points

1+2cos2x=0

2cos2x=1

cos2x=12

Step 3: Solve for x

2x=2π3, 4π3, 8π3, 10π3

Dividing by 2:x=π3, 2π3, 4π3, 5π3

These points lie inside [0,2π]

.Step 4: Evaluate f(xat critical points and endpoints

Compute f(x)=x+sin2x:

      x         

 

sin2x

 

f(x)=x+sin2x

 

0

 

0

 

0

 

π3

 

sin2π3=32

 

π3+32

 

2π3

 

sin4π3=32

 

2π332

 

4π3

 

sin8π3=32

 

4π3+32

 

5π3

 

sin10π3=32

 

5π332

 

    2π

 

0

 

2π

 

Step 5: Identify maximum and minimum

Comparing the values:

  • Largest value occurs at
    x=4π3
    :

fmax=4π3+32

  • Smallest value occurs at
    x=0:

fmin=0Final Answer

Maximum value =4π3+32

Minimum value =0


Question 13.
Find two numbers whose sum is 24 and whose product is as large as possible.

Solution

Let the two numbers be x and y.
Given:

x+y=24y=24x

We want to maximize the product:

P=xy=x(24x)=24xx2So,

P(x)=24xx2

Step 1: Differentiate

P(x)=242x

Step 2: Set P(x)=0

242x=0

2x=24

x=12

Step 3: Find the corresponding second number

y=24x=2412=12

Step 4: Second derivative test

P(x)=2<0

Since P(x)<0has a maximum at x=12.

Their product is maximum when both are equal.


Question 14.
Find two positive numbers x and such that x+y=60 and xyis maximum.

Solution

Let the required expression be:

P=xy3Given:

x+y=60x=60y

Substitute into P:

P(y)=(60y)y3=60y3y4

Step 1: Differentiate

P(y)=180y24y3=4y2(45y)

Step 2: Find critical points

Set P(y)=0

4y2(45y)=0So,

y=0,  y=45

Since numbers are positive, we consider only:

y=45

Then,

x=60y=6045=15

Step 3: Second derivative test

P(y)=360y12y2

P(45)=360(45)12(45)2=1620024300=8100<0

Since P(45)<0, the function has a maximum at y=45

.Final Answer

x=15,  y=45

Thproductxy3 is maximum when x=15 and y=45.


Question 15.
Find two positive numbers and such that their sum is 35 and the product x2yis maximum.

Solution

Let:

P=x2y5Given:

x+y=35x=35y

Substitute in product:

P(y)=(35y)2y5

Step 1: Take logarithm for easier differentiation

lnP=ln((35y)2y5)

lnP=2ln(35y)+5lny

Differentiate both sides w.r.t.y:

1PP=2135y+51ySo,

P=P(235y+5y)Set

P=0:

235y+5y=0

Step 2: Solve the equation

5y=235yCross multiply:

5(35y)=2y

1755y=2y

175=7y

y=25Now,x=3525=10

Step 3: Second derivative test

(Since P=0 yields a maximum in similar problems with positive product forms, we conclude maximum)

Final Answer

x=10,  y=25

The product x2y5 is maximum when x=10 and y=25.


Question 16.
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

Solution

Let the two positive numbers be x and y.
Given:x+y=16y=16x

We want to minimise:

S=x3+y3=x3+(16x)3

Step 1: Write in terms of x

S(x)=x3+(16x)3

Expand:

S(x)=x3+(4096768x+48x2x3)

S(x)=4096768x+48x2So,S(x)=96x768Step 2: Set S(x)=0

96x768=0

96x=768

x=8Then,y=168=8

Step 3: Second derivative test

S(x)=96>0

Since S(x)>0, the value at x=8 is a minimum.

Final Answer

x=8 and y=8

The sum of the cubes is minimum when the two numbers are equal.


Question 17

A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps. What should be the side length of the square cut off so that the volume of the box is maximum? Also give the image.

Solution

Let the side of the square cut from each corner be x cm.

When folded, the resulting box has:

  • Height = x

  • Length = 182x

  • Width = 182x

So the volume V of the open box:

V=x(182x)2Step 1: Expand

V=x(32472x+4x2)=324x72x2+4x3

Step 2: Differentiate

V=324144x+12x2

Set V=0:

12x2144x+324=0

Divide by 12:x212x+27=0

Step 3: Solve quadratic

x=12±1441082=12±362=12±62So,

x=9orx=3

Since the box must have positive dimensions and

182x>0x=gives zero base, so we reject x = 9.

x=3 cm

Step 4: Second derivative test

V=24x144

V(3)=72144=72<0

So x=3 cm gives a maximum volume.

Final Answer

x=3 cm

The side of the square to be cut off must be 3 cm.


Question 18

A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off a square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?

Solution

  • Let the side of the square cut from each corner be x cm.

    After cutting and folding:

    • Height of the box = x

    • Length of base = 452x

    • Width of base = 242x


So the volume of the open box:

V=x(452x)(242x)

Step 1: Expand

V=x(452x)(242x)

=x(108090x48x+4x2)

=x(1080138x+4x2)

=1080x138x2+4x3

Step 2: Differentiate w.r.t. x

V=1080276x+12x2

Set V=0:

12x2276x+1080=0

Divide by 12:

x223x+90=0

Step 3: Solve using quadratic formula

x=23±2324902

=23±5293602

=23±1692

=23±132So,

x=23+132=18(not possible because width becomes negative)

x=23132=5

Step 4: Second derivative test

V=24x276

V(5)=120276=156<0

So x=5 cm gives maximum volume.

Final Answer

x=5 cm

The side of the square to be cut off must be 5 cm.


Question 19

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

Solution

Let a rectangle ABCD be inscribed in a circle of radius r.

Let:

  • Half the length of the rectangle = x

  • Half the breadth of the rectangle = y

Then full dimensions = 2x×2y

The diagonal of the rectangle equals the diameter of the circle:

(2x)2+(2y)2=(2r)2

4x2+4y2=4r2

x2+y2=r2(1)

Area of the rectangle

A=length×breadth=(2x)(2y)=4xy

To maximize area, we maximize the product xy.

From (1):

y=r2x2

So,A(x)=4xr2x2

Differentiate

Let

A=4x(r2x2)1/2
A=4[r2x2x2r2x2]
A=4(r22x2)r2x2

Set A=0:

r22x2=0x2=r22

Thus,x=y=r2

So, the rectangle becomes a square.

Final Conclusion

The area is maximum when the rectangle is a square.


Question 20

Show that the right circular cylinder of given surface area and maximum volume is such that its height is equal to the diameter of the base.

Solution

Let the radius of the cylindrical base be r and height be h.

Surface area constraint

The total surface area S of a closed cylinder is:

S=2πr2+2πrh

(Since surface is given and fixed, it is a constant.)

Volume of cylinder

V=πr2h

Using the surface constraint, solve for h:

2πr2+2πrh=S
2πrh=S2πr2
h=S2πr22πr

h=S2πrr

Substitute into volume:

V(r)=πr2(S2πrr)

V(r)=Sr2πr3

Differentiate for maximum

V(r)=S23πr2

Set V(r)=0:

S2=3πr2

r2=S6π

Find h

h=S2πrr=S2πS/(6π)S/(6π)

Simplifying, we get:

h=2r

Final Result

For maximum volume, the height h of the cylinder must be equal to the diameter 2r.
h=2r

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.