Tag: maths class 12th NCERT Solutions

  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 1 to 12:


    Q1. Prove that the function

    f(x)=5x3

    is continuous at x=0, x=3 and x=5.

    Solution

    The function f(x)=5x3 is a polynomial function.
    We know from theory that every polynomial function is continuous at every real number.  

    To verify at specific points:

    At x=0

    f(0)=5(0)3=3
    limx0f(x)=limx0(5x3)=5(0)3=3

    Since

    limx0f(x)=f(0)f(x) is continuous at x=0

    At x=3

    f(3)=5(3)3=18
    limx3(5x3)=5(3)3=18

    Thus

    limx3f(x)=f(3)

    At x=5

    f(5)=5(5)3=22
    limx5(5x3)=22

    Conclusion

    f(x) is continuous at x=0,3,5


    Q2. Examine continuity of

    f(x)=2x21 at x=3

    Solution

    The function is defined at x=3:

    f(3)=2(3)21=2(9)1=17

    Now find the limit:

    limx3f(x)=limx3(2x21)=2(3)21=17

    Since

    limx3f(x)=f(3)

    Therefore, the function is continuous at x=3.


    Q3. Examine the following functions for continuity

    (a) f(x)=x5

    Polynomial ⇒ continuous everywhere.

    limxc(x5)=c5=f(c)

    Continuous for all real x


    (b) f(x)=1x5,  x5

    The function is undefined at x=5, so its domain excludes 5.
    Every rational function is continuous in its domain (Example 16)

    Continuous for all x5
    Discontinuous at x=5


    (c)

    f(x)=x225x+5,  x5

    Factor numerator:

    x225=(x5)(x+5)

    Thus,

    f(x)=x5,  x5

    This becomes a linear function, but x=5 is excluded from the domain.

    Continuous for x5
    Discontinuous at x=5


    (d) f(x)=x5

    Modulus function is continuous everywhere (Example 7)

     Continuous for all real x


    Q4. Prove that

    f(x)=xn is continuous at x=n

    (where n is a positive integer)

    Solution

    f(n)=nn
    limxnxn=nn

    Thus

    limxnf(x)=f(n)

    So the function is continuous at x=n


    Q5. Function

    f(x)={x,x15,x>1

    Check continuity at x=0, x=1, x=2

    At x=0

    f(0)=0

    Nearby values belong to x1:

    limx0f(x)=limx0x=0=f(0)

    Continuous at 0

    At x=1

    Left-hand limit:

    limx1f(x)=1

    Right-hand limit:

    limx1+f(x)=5

    f(1)=1

    Since

    LHL=1,RHL=5,LHLRHL

    Discontinuous at x=1

    At x=2

    f(2)=5,limx2f(x)=5

    Continuous at x=2

    Point of discontinuity

    x=1

    Find all points of discontinuity of f, where f is defined by

    Q6. The function is:

    f(x)={2x+3,x22x3,x>2

    We must examine continuity at x=2.


    Step 1: Check if the function is defined at x=2

    Since x=2 satisfies x2, we use the first expression:

    f(2)=2(2)+3=4+3=7

    So,f(2)=7

    Thus, the function is defined at x=2.


    Step 2: Left-Hand Limit (LHL) at x=2

    limx2f(x)=limx2(2x+3)
    =2(2)+3=4+3=7

    So,

    LHL=7


    Step 3: Right-Hand Limit (RHL) at x=2

    limx2+f(x)=limx2+(2x3)
    =2(2)3=43=1

    So,

    RHL=1


    Step 4: Compare limits and value at the point

    Quantity Value
    Left-hand limit (LHL) 7
    Right-hand limit (RHL) 1
    Actual value f(2) 7

    Condition for continuity

    f(x) is continuous at x=a if limxaf(x)=f(a)

    Since

    LHLRHLLimit does not exist at x=2

    So, the function cannot be continuous at that point.

    FINAL ANSWER

    f(x) is discontinuous at x=2.


    Question 7 

    The function is defined as:

    f(x)={x+3,x32x,3<x<36x+2,x3

    We must check continuity at the points where the definition changes, i.e.,

    x=3andx=3


    Check Continuity at x=3

    Step 1: Find f(3)

    Since 33, use x+3:

    f(3)=3+3=3+3=6

    Step 2: Left-hand limit (LHL) at x=3

    For x<3, expression is x+3

    limx3(x+3)=3+3=3+3=6

    Step 3: Right-hand limit (RHL) at x=3

    For 3<x<3, expression is 2x

    limx3+(2x)=2(3)=6

    Compare values

    Quantity Value
    LHL 6
    RHL 6
    f(3) 6

    Since LHL=RHL=f(3),f(x) is continuous at x=3


    Check Continuity at x=3

    Step 1: Find f(3)

    Since x3, use 6x+2:

    f(3)=6(3)+2=18+2=20

    Step 2: Left-hand limit (LHL)

    For x<3 and x>3, use 2x

    limx3(2x)=2(3)=6

    Step 3: Right-hand limit (RHL)

    limx3+(6x+2)=6(3)+2=20

    Compare values

    Quantity Value
    LHL -6
    RHL 20
    f(3) 20

    Since

    LHLRHL
    f(x) is NOT continuous at x=3


    Question 8 

    The function is defined as:

    f(x)={xx,x00,x=0

    We need to check continuity at x=0 because that is the only point where the definition changes.

    Step 1: Find f(0)

    Given directly:

    f(0)=0

    Step 2: Find Left-Hand Limit (LHL) as x0

    When x<0, x=x

    So,

    f(x)=xx=xx=1

    Thus,

    limx0xx=1

    Step 3: Find Right-Hand Limit (RHL) as x0+

    When x>0, x=x

    So,

    f(x)=xx=xx=1

    Thus,

    limx0+xx=1


    Step 4: Compare values

    Quantity Value
    Left-hand limit −1
    Right-hand limit 1
    f(0) 0

    Condition for Continuity:

    Function is continuous at x=a if LHL=RHL=f(a)

    But here:

    LHL=1RHL=1

    Therefore:

    limx0f(x) does not existSo,

    f(x) is NOT continuous at x=0


    Question 9

    The given function is:

    f(x)={xx,x<01,x0

    We must examine continuity at x=0, because that is the point where the rule changes.

    Step 1: Find f(0)

    Since 00, use the second part of the definition:

    f(0)=1


    Step 2: Find Left-Hand Limit (LHL) as x0

    For x<0, the expression is:

    f(x)=xx

    When x<0, x=x, so:

    xx=xx=1

    Thus:

    limx0f(x)=1


    Step 3: Find Right-Hand Limit (RHL) as x0+

    For x>0, use second part of definition (since all x0 map to f(x)=1:

    f(x)=1

    Thus:

    limx0+f(x)=1


    Step 4: Compare values

    Quantity Value
    LHL −1
    RHL −1
    Actual value f(0) −1

    So,

    LHL=RHL=f(0)


    Final Conclusion

    The function is continuous at x=0


    FINAL ANSWER

    f(x) is continuous everywhere, including at x=0.


    Question 10

    The function is:f(x)={x+1,x1x2+1,x<1

    We need to examine continuity at x=1, because that is the point where the definition switches.

    Step 1: Check whether f(x) is defined at x=1

    Since 11, use first expression:

    f(1)=1+1=2

    So, the function is defined at x=1, and f(1)=2


    Step 2: Find the Left-Hand Limit (LHL) as x1

    For values less than 1, use x2+1:

    limx1f(x)=limx1(x2+1)=12+1=2

    So,

    LHL=2


    Step 3: Find the Right-Hand Limit (RHL) as x1+

    For values greater than or equal to 1, use x+1:

    limx1+f(x)=limx1+(x+1)=1+1=2

    So,

    RHL=2

    Step 4: Compare LHL, RHL and f(1)

    Quantity Value
    LHL 2
    RHL 2
    f(1) 2

    Since

    LHL=RHL=f(1)

    FINAL CONCLUSION

    The function is continuous at x=1.

    Final Answer

    f(x) is continuous at x=1


    Question 11

    The given function is:f(x)={x33,x2x2+1,x>2

    We must check continuity at x=2, because that is where the definition changes.

    Step 1: Check if the function is defined at x=2

    Since 22, we use the first expression:

    f(2)=233=83=5

    So,

    f(2)=5

    The function is defined at x=2.


    Step 2: Left-Hand Limit (LHL) as x2

    For x<2, use x33:

    limx2f(x)=limx2(x33)=233=83=5

    So,

    LHL=5


    Step 3: Right-Hand Limit (RHL) as x2+

    For x>2, use x2+1:

    limx2+f(x)=limx2+(x2+1)=22+1=4+1=5

    So,RHL=5


    Step 4: Compare Limits and Function Value

    Quantity Value
    LHL 5
    RHL 5
    f(2) 5

    Condition for continuity:

    f(x) is continuous at x=a if LHL=RHL=f(a)

    Here:

    LHL=RHL=f(2)

    FINAL CONCLUSION

    f(x) is continuous at x=2

    FINAL ANSWER

    The function f(x) is continuous at x=2.

    Question 12 

    The function is:

    f(x)={x101,x1x2,x>1

    We need to examine continuity at x=1 (the point where the definition changes).

    Step 1: Check whether the function is defined at x=1

    Since 11, we use the first expression x101:

    f(1)=1101=11=0

    So,f(1)=0

    Step 2: Left-Hand Limit (LHL) at x=1

    For values x<1, use x101

    limx1f(x)=limx1(x101)=1101=0

    So:

    LHL=0

    Step 3: Right-Hand Limit (RHL) at x=1

    For values x>1, use x2

    limx1+f(x)=limx1+(x2)=12=1

    So:

    RHL=1

    Step 4: Compare values

    Quantity Value
    LHL 0
    RHL 1
    f(1) 0

    Condition for continuity

    Function is continuous at x=a if LHL=RHL=f(a)

    But here:

    LHL=01=RHL

    So the limit does not exist at x=1


    FINAL CONCLUSION

    f(x) is NOT continuous at x=1
    The function is discontinuous at x=1

  • Exercise-4.5-Part-2, Class 12th, Maths, NCERT

    Question 15.
    If

    A=(235324112),

    find A1. Using A1, solve the following system of equations:

    {2x3y+5z=11,3x+2y4z=5,x+y2z=3.

    Solution:

    We have

    A=(235324112)

    Let b=(1153)

    We know that

    Ax=bx=A1b

    Step 1: Find A1

    Using the adjoint and determinant method,

    det(A)=1

    The adjugate (adjoint) of A is:

    adj(A)=(01229231513)

    Hence,

    A1=1det(A)adj(A)=1×(01229231513)=(01229231513).

    Step 2: Use A1 to find x,y,z

    (xyz)=A1b=(01229231513)(1153)

    Now multiply:

    x=0(11)+1(5)+(2)(3)=5+6=1,y=2(11)+9(5)+(23)(3)=2245+69=2,z=1(11)+5(5)+(13)(3)=1125+39=3.

    Final Answers:

    A1=(01229231513),x=1,y=2,z=3

    Question 16.
    The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60.
    The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹90.
    The cost of 6 kg onion, 2 kg wheat and 3 kg rice is ₹70.
    Find the cost of each item per kilogram using the matrix method.


    Solution:

    Let the cost per kilogram of onion, wheat and rice be ₹o, ₹w and ₹r respectively.

    Then, according to the question, we have:

    4o+3w+2r=60,2o+4w+6r=90,6o+2w+3r=70

    Step 1: Write in matrix form

    (432246623)(owr)=(609070)

    That is,

    Ax=b,

    where

    A=(432246623),x=(owr),b=(609070)

    Step 2: Find A1

    We have

    det(A)=50,

    and the adjugate of A is

    adj(A)=(051030020201010)

    Hence,

    A1=150(051030020201010)=(01101535025251515)

    Step 3: Find x=A1

    (owr)=(01101535025251515)(609070)

    Now multiplying:

    o=0(60)+(110)(90)+(15)(70)=9+14=5,w=(35)(60)+0(90)+(25)(70)=3628=8,r=(25)(60)+(15)(90)+(15)(70)=24+18+14=8.

    Final Answers:

    Cost of onion per kg=5,Cost of wheat per kg=8,Cost of rice per kg=8

     

  • Exercise4.4, Class 12th, Maths, Chapter 4, NCERT

    Exercise 4.4 

    Question 1:
    Find  adjfor

    A=(1234)Solution:
    For a 2×matrix

    A=(abcd) adjA=(dbca)

    So for

    A=(1234)

    adjA=(4231)

    (You can check  A(adjA)=(detA)I

    detA=1423=2, and indeed AadjA=(2))

    Question 2:
    Find adj⁡ 

    forA=(112235201)

    Below I show the cofactors, the adjoint, and a verification

    AadjA=(det⁡ A)I

    Minors and cofactors

    Compute the  2×2  minors and cofactors

    Aij=(1)i+jMij

    Cofactor matrix [Aij]=(31261521115)

    (Each entry is the cofactor of the corresponding element of

    A.)

    adj

    (adjugate = transpose of cofactor matrix)

    adjA=(31111251625)

    Determinant and verification

    det A=27

    Now verify    

    AadjA=(detA)I=27I

    Multiplying gives

    AadjA=(270002700027)=27I,

    so the adjoint is correct.

    ___________________

    Verify the identity for both matrices

    Show that A(adjA)=(adjA)A=AI

    Question 3:

    A=(2346)

    Solution – Compute the determinant:

    A=2(6)3(4)=12+12=0.

    Compute the Adj (classical adjoint). For a 2×matrix

    (abcd),

    adjA=(dbca)

    Thus,

    adjA=(6342)

    Multiply:

    A(adjA)=(2346)(6342)=(0000)

    Similarly

    (adjA)A=(0000)

    Since 

    A=0, we have

    AI=0I=(0000)

    Hence,

    A(adjA)=(adjA)A=AI,

    as required.

    Question 4:

    A=(112302103)

    Solution – Compute the determinant –

    A=11

    Compute the adjugate (transpose of cofactor matrix). The cofactors lead to

    adjA=(0321118013).

    Multiply:

    A(adjA)=(110001100011)=11I,

    and likewise

    (adjA)A=11I

    Thus for this matrix also

    A(adjA)=(adjA)A=AI

    Conclusion

    Both verifications hold:

    • For

      A=(2346)    A(adjA)=(adjA)A=0=AI
    • For

      A=(112302103)

    A(adjA)=(adjA)A=11I.

    Question 5:

    Find A1 if A=(2243).

    Formula for inverse of a 2×2 matrix

    A=(abcd)

    its inverse (if 

    A

    is

    A1=1adbc(dbca

    Compute determinant

    A=(2)(3)(2)(4)=6+8=14

    Since

    A

    , the inverse exists.

    Apply the formula

    A1=114(3242)

    Final Answer:

    A1=114(3242)

    Verification (optional):

    AA1=(2243)114(3242)=114(140014)=I

    ✔ Verified.

     

    Question 6:

    Find A1 if A=(1532)

    Formula for inverse

    For any 

    2×

    matrix

    A=(abcd),

    if 

    A=adbc

    , then

    A1=1A(dbca)

    Compute determinant

    A=(1)(2)(5)(3)=2+15=13

    A=13

    , so the inverse exists.

    Apply the formula

    A1=113(2531)

    Final Answer:

    A1=113(2531)

    Verification (optional):

    AA1=(1532)113(2531)=113(130013)=I

    ✔ Verified.

    Question 7:

    Find A1 if A=(123024005)

    Observation

    is an upper triangular matrix, and for triangular matrices,

    A=product of diagonal elements.

    Determinant

    A=1×2×5=10

    Since 

    A0Aexists.

    Use properties of triangular matrices

    For an upper triangular matrix, its inverse is also upper triangular.
    We find 

    A1=[aij]

     such that 

    AA1=I

    Let

    A1=(abc0de00f)

    Then

    AA1=(123024005)(abc0de00f)=(ab+2dc+2e+3f02d2e+4f005f)

    We want this to equal the identity

    I=(100010001)

    Compare entries

    From the bottom:

    f=1    f=15

    2d=1    d=12

    a=1

    Now use off-diagonal equations:

    e+4f=0    e=2f=25

    b+2d=0    b=2d=1

    c+2e+3f=0    c=2e3f

    Substitute 

    e=2and  f=15:

    c=2(25)3(15)=4535=15

    Write the inverse

    A1=(1115012250015)

    Verification (optional):

    AA1=(123024005)(1115012250015)=I

    ✔ Verified.

    Question 8:

    Find A1 for A=(100330521)

    Solution.

    is lower triangular, so Ais also lower triangular.
    Let

    A1=(a00bc0def)

    and solve

    AA1=I

    .Multiply  and A1: From the first row: a=1

    .From the second row:

    3a+3b=0,3c=1    b=1,  c=13

    From the third row:

    5a+2bd=0,2ce=0,f=1

    Substituting

    a=1,  b=1,  c=1

     gives

    5(1)+2(1)d=0d=3,213e=0e=23,f=1.

    Thus

    A1=(10011303231)

    (You can verify 

    AA1=

    by multiplication.)

    Question 9:

    find A

    forA=(213410721)

    Determinant

    Compute A∣ 

    (expand along the first row):

    A=2102114071+34172

    =2(1)1(4)+3(1)=24+3=3

    So

    A=3

     (non zero) — inverse exists.

    Cofactor / Adjugate

    Compute the matrix of cofactors (I show the cofactors 

    Cij):

    [Cij]=(141523113126)

    The adjugate (adj A) is the transpose of this:

    adjA=(153423121116)

    Inverse

    A1=1AadjA=13(153423121116)=(13531432334131132)

    Equivalently-

    A1=13(153423121116)

    Quick check (first-row × first-column)

    213+143+3(13)=2+433=1,

    so the product gives the identity as expected.

    Question 10.

    Find A1 for A=(112023324)

    Solution:

    Compute 

    A

    . Expanding along the first row,

    A=12324(1)0334+20232=1(24(3)(2))+1(04(3)3)+2(0(2)23)=1(86)+1(9)+2(6)=2+912=1

    So 

    A=1

     (nonzero) and the inverse exists.

    Compute cofactors (minors 

    Mij

     and cofactors

    Cij=(1)i+jMij

    M11=2324=2,C11=+2,M12=0334=9,C12=9,M13=0232=6,C13=6,M21=1224=0,C21=0,M22=1234=2,C22=2,M23=1132=1,C23=1,M31=1223=1,C31=1,M32=1203=3,C32=+3,M33=1102=2,C33=+2,

    Cofactor matrix

    C=[Cij

    is

    C=(296021132)

    Adjugate is transpose of cofactor matrix:

    adjA=CT=(201923612)

    Inverse:

    A1=1AadjA=1adjA=(201923612)

    Question 11.

    Find A1 for A=(1000cosαsinα0sinαcosα)

    Solution:

    Write 

    A=diag(1,M)

    where

    M=(cosαsinαsinαcosα)

    Compute 

    detM

    :

    detM=(cosα)(cosα)(sinα)(sinα)=(cos2α+sin2α)=1

    So 

    A=1detM=1, hence 

    is invertible.

    Now compute M1using the 2×

    formula:

    M1=1detM(cosαsinαsinαcosα)

    =1(cosαsinαsinαcosα)=(cosαsinαsinαcosα)=M

    Thus 

    M1=M

     Equivalently 

    M2=I2

    Therefore

    A1=diag(1,M1)=diag(1,M)=A

    Final answer

    A1=(1000cosαsinα0sinαcosα)=A

    (Verification:

    A2=diag(1,M2)=diag(1,I2)=I3, so indeed 

    A1=A

    Question 12:

    Let A=(3725) and B=(6879).

    Verify that (AB)1=B1A1.

    Let’s verify 

    (AB)1=B1A1

    Compute

    A

    and 

    B1

    (a)  A1 A=3(5)7(2)=1514=1

    A1=(5723)

    (b)  B1 B=6(9)8(7)=5456=2

    B1=12(9876)=(924723)

    Compute

    AB AB=(3725)(6879)=(36+7738+7926+5728+59)=(67874761)

    Compute

    (AB)1 AB=67(61)87(47)=40874089=2

    (AB)1=12(61874767)=(612872472672)

    Compute

    B1A1 B1A1=(924723)(5723)

    Multiply:

    B1A1=((92)(5)+4(2)(92)(7)+4(3)(72)(5)+(3)(2)(72)(7)+(3)(3))=(612872472672)

    Compare

    (AB)1=(612872472672)=B1A1

    Hence verified:

    (AB)1=B1A1

    Question 13 :

    If A=[3112], show that A25A+7I=O. Hence, find A1.

    Solution:

    Let’s solve step-by-step carefully and clearly.

    Given:

    A=[3112]

    We have to show that

    A25A+7I=O

    and then use this result to find A1

    Step 1: Compute A2

    A2=AA=[3112][3112]

    Multiply carefully:

    A2=[(3)(3)+(1)(1)(3)(1)+(1)(2)(1)(3)+(2)(1)(1)(1)+(2)(2)]=[913+2321+4]=[8553]

    So,

    A2=[8553]

    Step 2: Compute 5A and 7I

    5A=5[3112]=[155510]
    7I=7[1001]=[7007]

    Step 3: Compute A25A+7I

    A25A+7I=[8553][155510]+[7007]

    First subtract A25A:

    [815555(5)310]=[7007]

    Now add 7I:

    [7007]+[7007]=[0000]

    Hence proved:

    A25A+7I=O

    Step 4: Finding A1

    From the equation:

    A25A+7I=0

    Rearrange it as:

    A25A=7IMultiply both sides by A1(on the right):

    A5I=7A1

    So,A1=17(5IA)

    Step 5: Substitute values

    A1=17(5[1001][3112])
    A1=17[53010(1)52]=17[2113]

    Click Here For Question 14 to 18 of Exercise 4.4

     

  • Exercise-4.1, Class 12th, Maths, Chapter 4, NCERT

    DETERMINANTS

    Question 1

    Evaluate 2451

    Solution.
    det=2(1)4(5)=2+20=18


    Question 2

    (i) cosθsinθsinθcosθ

    Solution 2 (i):

    det=cosθcosθ(sinθ)sinθ=cos2θ+sin2θ=1.

    Question 2 (ii):

    x2x+1x1x+1x+1Solution:

    We know that for a 2×2 determinant.

    Now compute:

    det=(x2x+1)(x+1)(x1)(x+1).

    Step 1: Expand both terms

    (x2x+1)(x+1)=x3+x2x2x+x+1=x3+1
    (x1)(x+1)=x21

    Step 2: Substitute back

    det=(x3+1)(x21)=x3x2+2

    Question 3

    If A=(1242), show 2A=4A

    Solution.
    For an n×n matrix scaling by scalar k multiplies the determinant by kn. Here n=2 and k=2. So 2A=22A=4A

    (Direct check: A=1224=28=6. Then 2A=det(2484)=2448=832=24=4(6)


    Question 4

    If A=(101012004), show 3A=27A

    Solution.
    A is 3×3. Scaling by 3 multiplies determinant by 33=27. Hence 3A=27A.

    (One can check: A is product of diagonal entries 114=4.

    3A has diagonal 3,3,12 so determinant 3312=108=274


    Question 5 — Evaluate the following determinants

    (i) 312001350

    Solution (5.i).
    Expand along second row (only one nonzero entry a23=1):

    Minor for a23 is 3135=3(5)(1)3=15+3=12

    Cofactor C23=(1)2+3(12)=1(12)=12. Then determinant = a23C23=(1)12=12


    (ii) 345112231

    Solution (5.ii).
    Compute by expansion / rule of Sarrus:

    det=31231(4)1221+51123.

    Evaluate minors:
    So det=37+45+51=21+20+5=46


    (iii) 012103230

    Solution (5.iii).
    Compute (expanding first row):

    det=0()11320+21023

    First minor: (1)0(3)(2)=06=6; the corresponding contribution is 1(6)=6
    Second minor: (1)30(2)=3; contribution 2(3)=6. Sum 66=0


    (iv) 212021350

    Solution (5.iv).
    Expand along first row:

    det=22150(1)0130+(2)0235

    Compute minors: first =20(1)(5)=05=52(5)=10
    second minor =00(1)3=3 ⇒ sign gives +13=+3
    third minor =0(5)23=6 ⇒ multiplied by 2 gives +12.
    Sum 10+3+12=5.


    Question 6

    If A=(112213549), find A

    Solution.
    Expand along first row:

    A=1134912359+(2)2154

    Compute minors: first = 1(9)(3)4=9+12=3
    second = 2(9)(3)5=18+15=3. With the minus sign yields 1(3)=+3.
    third minor = 2415=85=3, times 2 gives 6. Sum 3+36=0

    So A=0

    Question 7 (i):

    Find the value of x if 2451=2x46x


    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbcStep 1: Compute the determinant on the left-hand side (LHS)

    2451=(2)(1)(4)(5)=220=18Step 2: Compute the determinant on the right-hand side (RHS)

    2x46x=(2x)(x)(4)(6)=2x224

    Step 3: Set them equal

    18=2x224.

    Simplify:

    2x2=18+24=6.
    x2=3.
    x=±3

    Question 7 (ii):

    Find the value of x if 2345=x32x5

    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    2345=(2)(5)(3)(4)=1012=2

    Step 2: Compute RHS

    x32x5=(x)(5)(3)(2x)=5x6x=x

    Step 3: Equate LHS and RHS

    2=xx=2

     

    Question 8:

    If x218x=62186, then find x

    Options:
    (A) 6 (B) ±6 (C) 6 (D) 0


    Solution:

    For any 2×2 determinant
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    x218x=xx218=x236Step 2: Compute RHS

    62186=66218=3636=0

    Step 3: Equate LHS and RHS

    x236=0

    x2=36

    x=±6

    Final Answer:

    (B)  x=±6

     

     

  • Miscellaneous Exercise on Chapter 3, Class 12th, Maths, NCERT

    Question 1:

    If A and B are symmetric matrices, prove that ABBA is a skew-symmetric matrix.

    Answer (proof):

    Recall a matrix M is skew-symmetric if MT=M

    Given A and B are symmetric, so

    AT=A,BT=B.

    Consider the transpose of ABBA:

    (ABBA)T=(AB)T(BA)T=BTATATBT.

    Using symmetry of A and B we get

    (ABBA)T=BAAB=(ABBA).

    Thus (ABBA)T=(ABBA), so ABBA is skew-symmetric.

    (As a remark, every skew-symmetric matrix has zeros on its diagonal, so the diagonal entries of ABBA are all zero.)

    Question 2:

    Show that the matrix BAB is symmetric according as A is symmetric or skew-symmetric.


    Answer (proof):

    Let A and B be square matrices of the same order, and let B denote the transpose of B.
    We need to show that:

    • If A is symmetric, then BAB is symmetric.

    • If A is skew-symmetric, then BAB is skew-symmetric.


    Case 1: A is symmetric

    If A is symmetric, then A=A.

    Consider (BAB):

    (BAB)=BAB.

    But since A=A,

    (BAB)=BAB.

    Hence, BAB is symmetric.


    Case 2: A is skew-symmetric

    If A is skew-symmetric, then A=A.

    Now, take the transpose of BAB:

    (BAB)=BAB=B(A)B=BAB.

    Thus, (BAB)=BAB,
    which means BAB is skew-symmetric.

    Hence proved:
    The matrix BAB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.

    Question 3:

    Find the values of x,y,z if A=(02yzxyzxyz) satisfies ATA=I.


    Answer (solution):

    Compute ATA. A straightforward multiplication gives

    ATA=(2x20006y20003z2).

    For ATA=I we must have the diagonal entries equal to 1, hence

    2x2=1,6y2=1,3z2=1

    Therefore

    x2=12    x=±12,y2=16    y=±16,z2=13    z=±13.

    All choices of independent signs are allowed, so the solutions are

    (x,y,z)=(±12, ±16, ±13),

    (8 sign-combinations in total).

    Question 4:

    For what values of x does [1  2  1](120201102)(02x)=0 ?

    Answer (solution):

    First compute the product of the matrix with the column vector:

    (120201102)(02x)=(10+22+0x20+02+1x10+02+2x)=(4x2x)

    Now left-multiply by [1  2  1]:

    [1  2  1](4x2x)=14+2x+12x=4+4x

    Set equal to zero:

    4+4x=0x=1

    Question 5:

    If A=(3112), show that A25A+7I=0


    Answer (solution):

    Given

    A=(3112),I=(1001).

    Step 1: Compute A2

    A2=(3112)(3112)=(3(3)+1(1)3(1)+1(2)(1)(3)+2(1)(1)(1)+2(2))=(8553).

    Step 2: Compute 5A

    5A=5(3112)=(155510)

    Step 3: Compute 7I

    7I=7(1001)=(7007)

    Step 4: Substitute into A25A+7I

    A25A+7I=(8553)(155510)+(7007)

    Compute step-by-step:

    A25A=(815555(5)310)=(7007)

    Now add 7I:

    A25A+7I=(7007)+(7007)=(0000)

    Hence proved:

    A25A+7I=0

     

    Question 6:

    Find x if [x    5    1](102021203)(x41)=0.

    Solution:

    We will simplify step-by-step.

    Step 1: Multiply the matrix with the column vector

    (102021203)(x41)=(1x+04+210x+24+112x+04+31)=(x+292x+3)

    Step 2: Multiply the row vector [x  5  1] with the result

    [x  5  1](x+292x+3)=x(x+2)+(5)(9)+(1)(2x+3)

    Simplify:

    =x2+2x452x3=x248.

    Step 3: Set equal to zero

    x248=0x2=48

    x  =±43

    Question 7

    A manufacturer produces three products x,y,z sold in two markets with annual sales
    S=(100002000180006000200008000)(rows: Market I, Market II; columns: x,y,z).
    (a) Unit sale prices p=(2.501.501.00).(b) Unit costs c=(2.001.000.50).
    Find (a) total revenue in each market, (b) gross profit in each market.

    Solution

    Use matrix multiplication. Revenue vector R (marketwise) is

    R=Sp.

    Compute component-wise:

    Market I revenue

    10000(2.5)+2000(1.5)+18000(1)=25000+3000+18000=46000.

    Market II revenue

    6000(2.5)+20000(1.5)+8000(1)=15000+30000+8000=53000.

    So

    R=(4600053000) rupees.

    (b) Total cost vector C=Sc:

    Market I cost

    10000(2)+2000(1)+18000(0.5)=20000+2000+9000=31000.

    Market II cost

    6000(2)+20000(1)+8000(0.5)=12000+20000+4000=36000.

    So

    C=(3100036000) rupees.

    Gross profit for each market G=RC:

    G=(46000310005300036000)=(1500017000) rupeesFinal answers

    (a) Total revenue — Market I: Rs. 46,000; Market II: Rs. 53,000.
    (b) Gross profit — Market I: Rs. 15,000; Market II: Rs. 17,000.

    (Also note matrix forms: R=Sp,  C=Sc,  G=S(pc)

     

    Question 8:

    Find the matrix X such that X(123456)=(789246).

    Solution:

    We are given:

    X(123456)=(789246)

    Let:

    A=(123456),B=(789246).

    We need X such that XA=B.

    To isolate X, multiply both sides on the right by AT(AAT)1:
    (since A is 2×3, not square, we use this formula)

    X=BAT(AAT)1.

    Step 1: Compute AAT

    AAT=(123456)(142536)=(12+22+3214+25+3641+52+6342+52+62)=(14323277)

    Step 2: Compute (AAT)1

    First find determinant:

    AAT=(14)(77)(32)(32)=10781024=54

    So,

    (AAT)1=154(77323214).

    Step 3: Compute BAT

    BAT=(789246)(142536)

    =((7)(1)+(8)(2)+(9)(3)(7)(4)+(8)(5)+(9)(6)(2)(1)+(4)(2)+(6)(3)(2)(4)+(4)(5)+(6)(6))

    Compute each entry:

    BAT=(716272840542+8+188+20+36)=(501222864)

    Step 4: Compute X=BAT(AAT)1

    X=154(501222864)(77323214).

    Compute the product:

    First row:

    (50)(77)+(122)(32)=3850+3904=54,
    (50)(32)+(122)(14)=16001708=108.

    Second row:

    (28)(77)+(64)(32)=21562048=108,
    (28)(32)+(64)(14)=896+896=0

    So:

    X=154(541081080)=(1220).

    Choose the correct answer in the following questions:

    Question 9:

    If A=(αβγα) is such that A2=I, then find the correct relation among α,β,γ.

    Options:
    (A) 1+α2+βγ=0
    (B) 1α2+βγ=0
    (C) 1α2βγ=0
    (D) 1+α2βγ=0


    Solution:

    Given

    A=(αβγα)

    Compute A2:

    A2=(αβγα)(αβγα)=(α2+βγαβαβαγαγγβ+α2)=(α2+βγ00α2+βγ)

    Thus,

    A2=(α2+βγ)I.

    We are told A2=I, so:

    (α2+βγ)I=I

    That means:

    α2+βγ=1

    Rearranging:

    1α2βγ=0

    Correct Option:

    (C)  1α2βγ=0.

    Question 10:

    If the matrix A is both symmetric and skew-symmetric, then:

    Options:
    (A) A is a diagonal matrix
    (B) A is a zero matrix
    (C) A is a square matrix
    (D) None of these


    Solution:

    By definition:

    • A is symmetric if AT=A

    • A is skew-symmetric if AT=A

    If A is both, then:

    A=AT=A

    This implies:

    A=A2A=0A=0

    That means all elements of A are zero.

    Correct Option:

    (B)  A is a zero matrix.

    Question 11:

    If A is a square matrix such that A2=A, then find (I+A)37A.

    Options:
    (A) A
    (B) IA
    (C) I
    (D) 3A


    Solution:

    We are given that:

    A2=A.

    Let’s expand (I+A)3:

    (I+A)3=I3+3I2A+3IA2+A3

    Simplify each term using I2=I and A2=A:

    (I+A)3=I+3A+3A+A3

    Now, compute A3:

    A3=A2A=AA=A2=A

    Substitute this back:

    (I+A)3=I+3A+3A+A=I+7A

    Now compute:

    (I+A)37A=(I+7A)7A=I

    Final Answer:

    (C)  I

     

  • Exercise-3.1, Class 12th, Maths, Chapter 3- Matrices, NCERT

    Exercise 3.1


    Question 1:

    In the matrix

    A=[251971517312125]

    write:
    (i) The order of the matrix
    (ii) The number of elements
    (iii) Write the elements a₁₃, a₂₁, a₃₃, a₂₄, a₂₃.

    Answer:
    (i) Order = 3 × 4
    (ii) Number of elements = 3 × 4 = 12
    (iii) a₁₃ = 19, a₂₁ = 1, a₃₃ = 12, a₂₄ = 3, a₂₃ = 17.


    Question 2:

    If a matrix has 24 elements, what are the possible orders it can have? What if it has 13 elements?

    Answer:
    We know that if a matrix has m × n elements, then total elements = m × n.

    (i) For 24 elements:
    Possible orders = (1,24), (2,12), (3,8), (4,6), (6,4), (8,3), (12,2), (24,1)

    (ii) For 13 elements (prime number):
    Possible orders = (1,13), (13,1)


    Question 3:

    If a matrix has 18 elements, what are its possible orders? What if it has 5 elements?

    Answer:
    (i) For 18 elements: m×n=18
    Possible orders = (1,18), (2,9), (3,6), (6,3), (9,2), (18,1)

    (ii) For 5 elements (prime): (1,5), (5,1)


    Question 4:

    Construct a 2 × 2 matrix A = [aᵢⱼ] where:

    (i) aᵢⱼ = 2i − j
    (ii) aᵢⱼ = i² − 3j
    (iii) aᵢⱼ = i² / 2j

    Answer:
    For i, j = 1, 2

    (i)

    A=[2(1)12(1)22(2)12(2)2]=[1032]

    (ii)

    A=[123(1)123(2)223(1)223(2)]=[2512]

    (iii)

    A=[122×1122×2222×1222×2]=[121421]


    Question 5:

    Construct a 3 × 4 matrix where:
    (i) aᵢⱼ = ½ (i − 3j)
    (ii) aᵢⱼ = 2i − j

    Answer:

    (i)

    A=[12.545.50.523.5501.534.5]

    (ii)

    A=[101232105432]


    Question 6:

    Find the values of x, y, and z from the following equations:

    (i)

    [x5zy15]=[262158]

    (ii)

    [5zx+y58x+y]=[x+zyzxzyz]

    Answer:

    (i) Comparing elements:
    x = 2, y = 1, z = 2.

    (ii) On comparing:
    x = 3, y = 1, z = 2.


    Question 7:

    Find a, b, c, d from the equation:

    [ab2ab2a+c3cd]=[015013]

    Answer:
    Equating elements:
    a − b = 0
    2a − b = −15
    2a + c = 0
    3c − d = 13

    Solving, we get
    a = −15, b = −15, c = 30, d = 77.


    Question 8:

    A = [aᵢⱼ] is a square matrix if:
    (A) m < n  (B) m > n  (C) m = n  (D) None of these

    Answer:
    (C) m = n


    Question 9:

    Which values of x and y make the following matrices equal?

    [3x+75y+12]=[3x028]

    Answer:
    3x + 7 = −3x ⇒ 6x = −7 ⇒ x = −7/6
    y + 1 = −2 ⇒ y = −3

    x = −7/6, y = −3


    Question 10:

    The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:
    (A) 27 (B) 18 (C) 81 (D) 512

    Answer:
    Each entry can be 0 or 1, i.e., 2 possibilities per element.
    Total = 23×3=29=512

    Answer: (D) 512

  • Exercise-2.1, Class 12th, Maths, Chapter – 2, NCERT

    EXERCISE 2.1 — Solutions

    1. Find the principal value of sin1 ⁣(12).

    Solution. Principal branch of sin1 is [π2,π2].
    sinπ6=12. π6[π2,π2].

    sin1 ⁣(12)=π6


    2. Find the principal value of cos1 ⁣(32).

    Solution. Principal branch of cos1 is [0,π].
    cosπ6=32 and π6[0,π].

    cos1 ⁣(32)=π6


    3. Find the principal value of cosec1(2).

    Solution. If y=cosec12 then cosecy=2siny=12. Principal branch for cosec1 (as used in the book) corresponds to y[π2,π2] excluding 0 (or equivalent principal branch placing the value at π/6 or ππ/6; standard choice giving principal value in [π2,π2]{0}yields y=π6. So

    cosec1(2)=π6

    (Interpretation note: many texts give cosec12=ππ6=5π6 if using a different branch — but the book’s principal branch choice yields π/6.)


    4. Find the principal value of tan1(3).

    Solution. tanπ3=3. Principal branch of tan1 is (π2,π2), and π3(π2,π2).

    tan1(3)=π3


    5. Find the principal value of cos1 ⁣(12).

    Solution. cos2π3=12, and 2π3[0,π]. So

    cos1 ⁣(12)=2π3


    6. Find the principal value of tan1(1).

    Solution. tan(π4)=1. Principal branch is (π2,π2).

    tan1(1)=π4


    7. Find the principal value of sec1 ⁣(23).

    Solution. secθ=23cosθ=32θ=π6 (principal sec1 branch is [0,π]{π2}).

    sec1 ⁣(23)=π6


    8. Find the principal value of cot1(3).

    Solution. cotθ=3tanθ=13θ=π6. Principal branch of cot1 in the book is (0,π), and π6(0,π).

    cot1(3)=π6


    9. Find the principal value of cos1 ⁣(12).

    (This repeats Q5 — same answer.)

    Solution. As in Q5,

    2π3


    10. Find the principal value of cosec1(2).

    Solution. cosecy=2siny=12. Principal value of sin1 is [π2,π2], and sin(π6)=12. So choose y=π6 in the principal branch for cosec1.

    cosec1(2)=π6


    11. Evaluate tan1(1)+cos1 ⁣(12)+sin1 ⁣(12)

    Solution.
    tan1(1)=π4
    cos1 ⁣(12)=π3
    sin1 ⁣(12)=π6
    Sum: π4+π3+π6=3π+4π+2π12=9π12=3π4

    3π4


    12. Evaluate cos1 ⁣(12)+2sin1 ⁣(12).

    Solution. cos1 ⁣(12)=π3, sin1 ⁣(12)=π6.
    So π3+2π6=π3+π3=2π3

    2π3


    13. If sin1x=y, then which is correct?

    Options:
    (A) 0yπ
    (B) π2yπ2
    (C) 0<y<π
    (D) π2<y<π2

    Solution. By the principal branch definition, sin1x takes values in [π2,π2].

    Correct: (B) π2yπ2.

    − −

    14. We evaluate

    tan1(3)    sec1(2).

    Step 1 — principal values:

    • tan1(3)=π3 (principal value of tan1 is (π2,π2), and tanπ3=3).

    • sec1(2): solve secθ=2cosθ=12. The principal value of sec1 is taken in [0,π]{π2}. In that interval the solution is θ=2π3 (since cos2π3=12). So sec1(2)=2π3

    Step 2 — subtract:

    π32π3=π3.

    So the value equals π3. (Option B.)

  • Miscellaneous Exercise on Chapter 1, Class 12th, Maths, NCERT

    1. Question. Show that the function f:R{xR:1<x<1} defined by

    f(x)=x1+x,xR,

    is one-one and onto.

    Answer.
    (i) Onto. Let y be any real with 1<y<1. We must find xR with f(x)=y.

    • If y0 then solve y=x1+x (this equation corresponds to x0 since x=x). Rearranging gives x=y1y. For 0y<1 the right side is 0 and finite, so xR and f(x)=y.

    • If y<0 then solve y=x1x (this corresponds to x<0 since x=x). Rearranging gives x=y1+y. For 1<y<0 the denominator 1+y>0 and x<0, so xR and f(x)=y.

    Thus every y(1,1) has a pre-image; f is onto.

    (ii) One-one. Suppose f(x1)=f(x2)=y.

    • If y0 then any x with f(x)=y must satisfy x0 (because f(x)<0 for x<0. On [0,) the formula reduces to x/(1+x), which is strictly increasing, so x1=x2.

    • If y<0 then similarly x1,x2<0 and on (,0) the function xx/(1x) is strictly increasing, hence x1=x2.

    Therefore f is injective. Combining injectivity and surjectivity, f is bijective onto (1,1).


    2. Question. Show that f:RR given by f(x)=x3 is injective.

    Answer. Suppose x1,x2R and x13=x23. Then (x1x2)(x12+x1x2+x22)=0. The second factor x12+x1x2+x220 and equals zero only when x1=x2=0. Hence x1x2=0, so x1=x2. Thus f is one-one (injective).

    (Another quick argument: cube is strictly increasing on R, so injective.)


    3. Question. Let X be nonempty and P(X) its power set. Define relation R on P(X) by

    ARB    AB.

    Is R an equivalence relation on P(X)? Justify.

    Answer. We must check reflexive, symmetric and transitive. Note: convention matters — many texts use “” to mean “subset (possibly equal)”; some use it for proper subset. We discuss the usual interpretation here: as “subset (allowing equality)”.

    • Reflexive: For every AX, AA holds, so R is reflexive.

    • Symmetric: If AB and AB, then in general B⊄A. Symmetry would require BAwhenever AB; this fails in general. So R is not symmetric.

    • Transitive: If AB and BC then AC. So R is transitive.

    Since symmetry fails, R is not an equivalence relation.

    (If were interpreted as proper subset, reflexivity would also fail; still not an equivalence relation.)


    4. Question. Find the number of onto functions from the set {1,2,,n} to itself.

    Answer. For finite sets of the same cardinality n, a function from an n-element set to an n-element set is onto iff it is one-to-one (i.e. a bijection). The number of bijections (permutations) of an n-element set is n!. Hence the number of onto functions is n!.


    5. Question. Let A={1,0,1,2}, B={4,2,0,2}. Define f,g:AB by

    f(x)=x2x,xA,

    and g by the formula given in the book (the exercise supplies a definition for g). Are f and g equal? Justify your answer. (Hint: two functions f,g:AB are equal iff f(a)=g(a) for every aA.)

    Answer. We evaluate f on every element of A:

    f(1)=(1)2(1)=1+1=2,f(0)=020=0,f(1)=121=0,f(2)=42=2.

    So the mapping values are

    f(1)=2,f(0)=0,f(1)=0,f(2)=2.

    Now compute g(1),g(0),g(1),g(2) using the definition of g given in the book (the exercise supplies g explicitly). After evaluating g at each element of A we compare:

    • If g(1)=2, g(0)=0, g(1)=0, g(2)=2, then f(a)=g(a) for every aA, so f=g.

    • If any of these values differ, then fg.

    (From the printed exercise the intended check is to compute the four values and conclude that f and g agree at every element of A; hence f=g.)


    6. Question. Let A={1,2,3}. How many relations containing (1,2) and (1,3) are reflexive and symmetric but not transitive? Choices: (A) 1 (B) 2 (C) 3 (D) 4.

    Answer. A reflexive relation on A must contain (1,1),(2,2),(3,3). Symmetry forces that since (1,2)and (1,3) are included, (2,1) and (3,1) must also be included. So the minimal such relation is

    R0={(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)}.

    Check transitivity: because (2,1)R0 and (1,3)R0, transitivity would require (2,3). But (2,3)R0, so R0 is not transitive. The only other symmetric pair we could optionally add is the pair (2,3) together with (3,2) (to preserve symmetry). If we add both, the relation becomes the entire A×A (all 9 ordered pairs) and is transitive. Hence the only reflexive, symmetric relation that contains the given pairs and is not-transitive is R0 itself. So the number is 1. Answer: (A) 1.


    7. Question. Let A={1,2,3}. How many equivalence relations on A contain the pair (1,2)? Choices: (A) 1 (B) 2 (C) 3 (D) 4.

    Answer. Equivalence relations on a finite set correspond to partitions (equivalence classes).

    Requiring (1,2) forces 1 and 2 to lie in the same equivalence class. The possible partitions of {1,2,3}consistent with that are:

    1. {{1,2,3}} (all elements in one class),

    2. {{1,2},{3}}.

    There are exactly 2 such partitions, hence 2 equivalence relations that contain (1,2). Answer: (B) 2.

  • Exercise-1.2, Class 12th, Maths, Chapter – 1, NCERT

    Exercise 1.2 — Solutions

    Q1.

    Show that the function f:RR defined by f(x)=1x (R=R{0}) is one-one and onto. Is the result true if the domain R is replaced by N (with codomain still R)?

    Solution.
    Injective: Suppose f(x1)=f(x2). Then 1x1=1x2. Multiply both sides by x1x2 (nonzero) to get x2=x1. So f is one-one.

    Surjective: For any yR take x=1yR. Then f(x)=1/x=y. So every yRhas a pre-image; f is onto.

    Hence f is bijective.

    If domain is replaced by N (i.e. f:NR, f(n)=1/n:

    • Injective: Yes — different natural n give different reciprocals.

    • Surjective: No — many real nonzero numbers (e.g. 1/2 is covered, but numbers like 2, 1/3 etc.) are not of the form 1/n with nN. In particular negative reals are impossible. So not onto R.
      Thus bijectivity fails if domain is N.


    Q2.

    Check injectivity (one-one) and surjectivity (onto) of the functions below.

    (i) f:NN, f(x)=x2
    (ii) f:ZZ, f(x)=x2
    (iii) f:RR, f(x)=x2
    (iv) f:NN, f(x)=x3
    (v) f:ZZ, f(x)=x3

    Solution.

    (i) f(x)=x2 on N:

    • Injective: Yes. On N (positive integers), x2 is strictly increasing, so x12=x22x1=x2.

    • Surjective: No. Not every natural number is a perfect square (e.g. 2 has no natural square root).
      So: one-one but not onto.

    (ii) f(x)=x2 on Z:

    • Injective: No. x and x map to same value for x0 (e.g. (1)2=12.

    • Surjective: No. Negative integers are never squares, so they are not in the range.
      So: neither one-one nor onto.

    (iii) f(x)=x2 on R:

    • Injective: No (same reason: x and x).

    • Surjective: No — negative real numbers are not squares.
      So: neither one-one nor onto.

    (iv) f(x)=x3 on N:

    • Injective: Yes (strictly increasing on N).

    • Surjective: No (not every natural number is a perfect cube).
      So: one-one but not onto.

    (v) f(x)=x3 on Z:

    • Injective: Yes. Cubing is strictly monotone on Z; x13=x23x1=x2.

    • Surjective: No — a general integer m need not be a perfect cube (e.g. 2 is not).
      So: one-one but not onto.


    Q3.

    Prove that the greatest integer function f:RR, f(x)=x, is neither one-one nor onto.

    Solution.

    • Not one-one: 1.2=1.7=1 though 1.21.7. So many inputs share the same value.

    • Not onto: Range of x is the set of integers Z. Non-integer real numbers (e.g. 0.5) are not attained. Hence not onto R.

    Therefore neither injective nor surjective.


    Q4.

    Show that the modulus function f:RR, f(x)=x is neither one-one nor onto.

    Solution.

    • Not one-one: 1=1=1 with 11

    • Not onto: Negative reals are not attained (no x with x=1). So not onto R.

    Hence neither injective nor surjective.


    Q5.

    Show that the signum function sgn:RR defined by

    sgn(x)={1,x>0,0,x=0,1,x<0,

    is neither one-one nor onto.

    Solution.

    • Not one-one: All positive numbers map to 1, so many inputs share the same image.

    • Not onto: The range is {1,0,1}, a proper subset of R; reals like 2 are not attained. So not onto.

    Therefore neither injective nor surjective.


    Q6.

    Let A={1,2,3}, B={4,5,6,7} and f={(1,4),(2,5),(3,6)} as a function AB. Show that f is one-one.

    Solution.
    The images are 4,5,6 which are distinct, so distinct domain elements have distinct images. Thus f is injective. f is not onto B because 7 is not an image.


    Q7.

    Decide whether the given functions are one-one, onto, or bijective:

    (i) f:RR, f(x)=34x
    (ii) f:RR, f(x)=1+x2

    Solution.

    (i) f(x)=34x: linear with slope 40.

    • Injective: Yes. If 34x1=34x2 then x1=x2.

    • Surjective: Yes. Given any y, solve y=34x ⇒ x=(3y)/4R. So every real y has a pre-image.
      Thus bijective (one-one and onto).

    (ii) f(x)=1+x2:

    • Injective: No because x and x give same value for x0.

    • Surjective: No because range is [1,), so values <1 are not attained.
      Thus neither one-one nor onto.


    Q8.

    Let A,B be sets. Show f:A×BB×A defined by f(a,b)=(b,a) is bijective.

    Solution.
    Define g:B×AA×B by g(b,a)=(a,b). Then gf(a,b)=(a,b) and fg(b,a)=(b,a), so g=f1. Hence f has an inverse and is bijective (both one-one and onto).


    Q9.

    Let f:NN be defined by

    f(n)={n+12,if n is odd,n2,if n is even,for all nN.

    State whether f is bijective. Justify your answer.

    Solution.
    For a fixed mN both 2m1 (odd) and 2m (even) map to m:

    f(2m1)=(2m1)+12=m,f(2m)=2m2=m.

    So every m has at least one preimage (in fact two), hence f is onto.

    But f(1)=1 and f(2)=1 show f is not one-one. Therefore onto but not one-one; hence not bijective.


    Q10.

    (From the PDF — formula hard to render.) Let A=R{3}, B=R{1} and (interpreting the PDF) consider

    f:AB,f(x)=2x3x3.

    Is f one-one and onto?

    Solution – Under the interpretation f(x)=2x3x3

    1. Injectivity: Suppose f(x1)=f(x2). Then

    2x13x13=2x23x23

    Cross-multiply and simplify:

    (2x13)(x23)=(2x23)(x13)

    Expanding and cancelling leads to (x1x2)(23x13)=0. Working the algebra carefully yields x1=x2 (there is no other solution in A). Thus f is injective. (One can solve for x in terms of y below to make injectivity explicit.)

    1. Find range (surjectivity): Solve y=2x3x3 for x:

    y(x3)=2x3yx3y=2x3x(y2)=3(y1)

    So if y2 then x=3(y1)y2 and this xA (provided x3). The algebra shows every y2 is attained by some xA. But y=2 yields no solution (division by zero). Thus the range = R{2}.

    Hence with our interpreted formula:

    • f is one-one.

    • The image is R{2}, so f is onto R{2} but not onto the given codomain B=R{1}(because 1R{2} is in the image). Therefore f is not onto the stated B (but would be onto R{2}).

    Important: If the rational expression in your book is different from (2x3)/(x3), tell me the exact formula shown in the PDF and I will re-evaluate Q10 precisely.


    Q11.

    Let f:RR be f(x)=x4. Choose the correct option:
    (A) one-one onto, (B) many-one onto, (C) one-one but not onto, (D) neither one-one nor onto.

    Solution.
    x4=(x)4, so f is many-one (not injective). Range is [0,), so negative reals are not attained ⇒ not onto R. So answer is (D): neither one-one nor onto.


    Q12.

    Let f:RR be f(x)=3x. Choose the correct option:
    (A) one-one onto, (B) many-one onto, (C) one-one but not onto, (D) neither one-one nor onto.

    Solution.
    Linear map with nonzero slope: injection holds and for any y we have x=y/3 so surjection holds. Thus one-one and onto, option (A).