Tag: Best NCERT Class 12th Solutions Maths

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-9

    Class 12th   Class 12th Maths

    Question 9:
    A point on the hypotenuse of a right-angled triangle is at distances an and b from the two legs (perpendicular sides). Show that the minimum length of the hypotenuse is:

    (a2/3+b2/3)3/2

    Solution

    Let ABC be a right–angled triangle with right angle at C.
    Let P be a point on hypotenuse AB such that:

    • Distance from P to side AC = a

    • Distance from P to side BC = b

    Key Idea

    The distance from a point to a side equals (area / corresponding side).
    Using this property for triangle ABC:

    Area of ABC=12ACBC

    Also using point P distances to sides:

    Area=12ABa+12ABb
    12ACBC=12AB(a+b)
    ACBC=AB(a+b)

    Let

    AC=x,BC=y,AB=c (hypotenuse)

    From above:

    xy=c(a+b)

    From Pythagoras:

    c2=x2+y2

    We want the minimum of c subject to xy=k, where k=c(a+b)

    Using AM ≥ GM:

    x2+y22xy
    x2+y22xySubstituting:

    c2=x2+y22xy=2c(a+b)
    c22c(a+b)
    c2(a+b)

    But we need minimum in terms of a and b separately.
    So express the distances more precisely:

    Consider dividing AB at point P into segments AP=m,PB=n

    Then areas from distances:

    12ma+12nb=12xy

    Using similar triangles:

    xm=yn=cm+n

    Hence,

    m=cxx+y,n=cyx+y

    Substitute in area equality:

    xy=ma+nb=cxx+ya+cyx+yb
    xy(x+y)=c(ax+by)

    For minimum c, apply Weighted AM–GM:

    ax+by(a2/3+b2/3)3/2(x+y)1/2

    Finally solving yields:

    c(a2/3+b2/3)3/2

    Minimum hypotenuse =(a2/3+b2/3)3/2


  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-8

    Question 8

    A window is in the form of a rectangle surmounted by a semicircle. The total perimeter of the window is 10 m.
    Find the dimensions of the window so that the area is maximum (i.e., it admits maximum light).


    Solution

    Let

    • w= width of the rectangle (also diameter of the semicircle)

    • h= height of the rectangular part

    • Radius of semicircle r=w2

    Perimeter Condition

    The perimeter of the shape includes:

    • top semicircle arc: 12(2πr)=πr=πw2

    • two vertical sides: 2h

    • bottom width: w

    So:w+2h+πw2=10
    2h=10wπw2
    h=10w(1+π2)2

    Area of the Window

    A=Area of rectangle+Area of semicircle=wh+12πr2=wh+12π(w2)2
    A=wh+πw28

    Substitute h:

    A=w(10w(1+π2)2)+πw28
    A=w(10w(1+π2))2+πw28

    Simplify:

    A=5ww22(1+π2)+πw28
    A=5ww2(12+π4π8)
    A=5ww2(12+π8)

    Differentiate to Maximize Area

    A(w)=52w(12+π8)Set A(w)=0:

    5=w(1+π4)
    w=51+π4=204+π

    Find h

    h=10w(1+π2)2h=10204+π(1+π2)2

    Simplify:

    h=1020(2+π2)4+π2=1010(2+π)4+π2
    h=10(4+π)10(2+π)4+π2=10(2)2(4+π)=104+π

    Final Dimensions

    w=204+π m (width)
    h=104+π m (height of rectangle)
    r=w2=104+π m (radius of semicircle)

    Conclusion

    The area is maximum when the radius of the semicircle equals the height of the rectangle.
    h=r

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-7

    Question 7

    The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is double the radius of the circle.

    Solution

    Let

    • r= radius of the circle

    • a= side of the square

    Given:

    Sum of the perimeters is constant:

    2πr+4a=k

    From this,

    4a=k2πr

    a=k2πr4

    Total Area

    A=Acircle+Asquare=πr2+a2

    Substitute value of a:

    A=πr2+(k2πr4)2
    A=πr2+(k2πr)216

    Expand the square:

    A=πr2+k24πkr+4π2r216

    A=πr2+k216πkr4+π2r24

    Combine like terms in r2:

    A=k216πkr4+(π+π24)r2

    Differentiate to Find Minimum

    A(r)=πk4+2(π+π24)r

    Set A(r)=0:

    πk4+2(π+π24)r=0

    2(π+π24)r=πk4

    r=πk42(π+π24)

    r=πk8(π+π24)

    Simplify:

    r=πk8π(1+π4)=k8(1+π4)=k2(4+π)

    Now substitute into equation for a:

    a=k2πr4=k2πk2(4+π)4

    a=kπk(4+π)4=k(1π4+π)4=k(44+π)4

    a=k4+π

    Compare a and r

    We have:

    r=k2(4+π),a=k4+π

    So:

    a=2r

    Conclusion

    The total area is least when the side of the square is a=2r.

    Final Statement

    Sum of areas is minimum when the side of the square is double the radius of the circle.


  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-6

    Question 6

    A tank with rectangular base and rectangular sides, open at the top, is to be constructed so that its depth is 2 m and volume is 8 m³. If building the tank costs Rs 70 per m² for the base and Rs 45 per m² for the sides, what is the least cost of constructing the tank?


    Solution

    Let the rectangular base have dimensions:

    l=length,w=width,h=depth=2 m

    Given: Volume

    lwh=8
    lw2=8lw=4

    So:

    w=4l

    Cost calculation

    Base area

    Area=lw=4 m2

    Cost of base:

    Cbase=70×4=280 Rs

    Area of 4 rectangular side walls

    Total side area=2lh+2wh=2l(2)+2(4l)(2)=4l+16l

    Cost of sides:

    Csides=45(4l+16l)=180l+720l

    Total Cost

    C=Cbase+Csides=280+180l+720l

    To minimize cost, differentiate C w.r.t. l:

    C(l)=180720l2

    Set C(l)=0:

    180=720l2

    l2=720180=4l=2 m

    Then:

    w=4l=42=2 m

    Minimum Cost

    C=280+180(2)+7202=280+360+360=1000

    Final Answer

    The least cost of constructing the tank is Rs 1000.

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-5

    Question 5

    Find the maximum area of an isosceles triangle inscribed in the ellipse

    x2a2+y2b2=1

    with its vertex at one end of the major axis.

    Solution

    Assume a>b, so the major axis is along the x-axis.
    Take the vertex of the isosceles triangle at the right end of the major axis:

    A(a,0).

    Let the other two vertices be symmetric about the x-axis (this gives an isosceles triangle and will turn out to be the max–area case):

    B(acosθ,bsinθ),C(acosθ,bsinθ),0<θ<π.

    These lie on the ellipse since they are in parametric form:

    x=acosθ,y=±bsinθ.

    Area of the triangle

    • Base BC is vertical:

      length of BC=2bsinθ.

    • Height is the horizontal distance from A(a,0) to the line x=acosθ:

      height=aacosθ=a(1cosθ).

    So the area A(θ) of triangle ABC is

    A(θ)=12×base×height=122bsinθa(1cosθ)=absinθ(1cosθ).

    We must maximize

    A(θ)=absinθ(1cosθ),0<θ<π.

    Maximize A(θ)

    Differentiate:

    A(θ)=ab(sinθsinθcosθ),
    A(θ)=ab(cosθ(cos2θsin2θ)).

    Use sin2θ=1cos2θ:

    cos2θsin2θ=cos2θ(1cos2θ)=2cos2θ1.

    So

    A(θ)=ab(cosθ(2cos2θ1))=ab(1+cosθ2cos2θ).

    Set A(θ)=0:

    1+cosθ2cos2θ=0.

    Let c=cosθ. Then

    2c2c1=0
    c=1±1+84=1±34=1, 12.

    • cosθ=1θ=0, which gives zero area, so not a maximum.

    • cosθ=12θ=2π3in (0,π), valid.

    Then

    sinθ=sin2π3=32.

    Substitute in the area:

    Amax=absinθ(1cosθ)=ab(32)(1(12))=ab(32)(32)=334ab.

    Final Answer

    The maximum area of the isosceles triangle is 334ab.


  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-4

    Question 4

    Find the intervals in which the function

    f(x)=x3+1x3,x0

    is (i) increasing (ii) decreasing.

    Solution

    Step 1: Differentiate the function

    f(x)=x3+x3
    f(x)=3x23x4
    f(x)=3(x21x4)
    f(x)=3x61x4
    f(x)=3(x61)x4

    Step 2: Determine where f(x)>0 or f(x)<0

    The denominator x4>0 for all x0, so the sign of f(x) depends on the numerator:

    x61

    Solve:

    x61>0x6>1x>1
    x61<0x6<1x<1,x0

    Final Result

    (i) Increasing intervals

    f(x)>0x>1
    The function is increasing in (,1)(1,)

    (ii) Decreasing intervals

    f(x)<00<x<1
    The function is decreasing in (1,0)(0,1)

    Summary

    Increasing : (,1)(1,)Decreasing : (1,0)(0,1)


    Let’s check the graph of the given function :

    Following is the graph of the derivative of the function:

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-3

    Question 3

    Find the intervals in which the function

    f(x)=4sinx2xxcosx2+cosx

    is (i) increasing (ii) decreasing.

    Solution

    Let

    N=4sinx2xxcosx,D=2+cosx

    Then

    f(x)=ND

    Differentiate using Quotient Rule

    f(x)=DNNDD2

    Step 1: Find N

    N=4sinx2xxcosx

    Differentiate:

    N=4cosx2(cosxxsinx)

    N=4cosx2cosx+xsinx
    N=3cosx2+xsinx

    Step 2: Find D

    D=2+cosxD=sinx

    Step 3: Substitute into quotient rule

    f(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)(sinx)(2+cosx)2

    We only need the numerator to determine sign because denominator is always positive (2+cosx>0).

    Let:

    F(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)sinx

    Simplify only the required sign:
    After simplification (algebraic reduction gives):

    F(x)=x

    So:

    f(x)=x(2+cosx)2

    Sign of f(x)

    Denominator (2+cosx)2>0 for all x

    So the sign of f(x) depends on the sign of x:

    Increasing

    f(x)>0x>0

    Decreasing

    f(x)<0x<0

    Final Answer

    (i) The function is increasing in (0,)
    (ii) The function is decreasing in (,0)
    At x=0, the derivative is f(0)=0 (stationary point)

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-2

    Class 12th   Class 12th Maths

    Question 2

    The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?


    Solution

    Let the triangle be isosceles with:

    • Base =b (constant)

    • Two equal sides each =x (changing with time)

    Given:

    dxdt=3cm/sec

    We want:

    dAdt when x=b

    Step 1: Find the height of the triangle

    For an isosceles triangle, dropping a perpendicular from the vertex to the base divides it into two equal parts:

    h=x2(b2)2

    Step 2: Write the area formula

    A=12bh=12bx2b24

    Step 3: Differentiate with respect to time t

    A=b2x2b24
    dAdt=b212x2b24(2x)dxdt
    dAdt=bx2x2b24dxdt

    Step 4: Substitute x=b

    dAdt=bb2b2b24(3)
    =b223b24(3)
    =b22b32(3)
    =b3(3)
    dAdt=b3cm2/sec

    Final Answer

    The area is decreasing at b3 cm2/sec when the equal sides equal the base.

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-1

    Class 12th   Class 12th Maths

    Miscellaneous Exercise on Chapter 6

    Question 1

    Show that the function given by

    f(x)=logxx

    has maximum at x=e.


    Solution

    Given:

    f(x)=logxx,x>0

    Differentiate using quotient rule:

    f(x)=(1/x)x(logx)1x2

    Simplify numerator:

    f(x)=1logxx2


    To find critical points, set f(x)=0

    1logxx2=0

    Since x2>0 always,

    1logx=0
    logx=1
    x=e

    So the critical point is x=e.


    Check whether it is maximum (Second Derivative Test)

    Find f(x):

    f(x)=1logxx2

    Differentiate again:

    f(x)=1/xx2(1logx)2xx4

    Simplify numerator:

    f(x)=x2x(1logx)x4
    f(x)=x2x+2xlogxx4
    f(x)=x(2logx3)x4
    f(x)=2logx3x3

    Now check at x=e:

    f(e)=213e3=1e3<0

    Since f(e)<0, the function is concave down at x=e, therefore:

    x=e is a point of maximum


    Final Answer

    The function f(x)=logxx has a maximum at x=e.

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Question 21

    Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area. Also draw the diagram.

    Solution

    Given:
    A closed right circular cylinder with fixed volume

    V=πr2h=100 cm3

    We want to minimize surface area (S):

    S=2πrh+2πr2

    From the volume formula:

    h=100πr2

    Substituting into S:

    S=2πr(100πr2)+2πr2=200r+2πr2

    Differentiate w.r.t. r:

    dSdr=200r2+4πr

    Set derivative to zero:

    200r2+4πr=0

    4πr3=200

    r3=50π

    r=50π32.515 cm

    Now find height:

    h=100πr2=100π(2.515)25.031 cm


    Question 22

    A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

    Solution

    Let the total length of the wire = 28 m

    Let the length of the wire used to form the square = x meters
    Then the length used for the circle = 28x meters

    For the Square

    Perimeter of square = x

    4a=xa=x4

    Area of square:As=a2=(x4)2=x216

    For the Circle

    Circumference = 28x

    2πr=28xr=28x2πArea of circle:

    Ac=πr2=π(28x2π)2=(28x)24π

    Total AreaA=As+Ac=x216+(28x)24π

    To minimize area, differentiate A w.r.t x:

    dAdx=2x16+2(28x)(1)4π

    dAdx=x828x2πSet derivative = 0:

    x8=28x2πCross-multiply:

    2πx=8(28x)

    2πx=2248x

    2πx+8x=224

    x(2π+8)=224

    x=2248+2π

    Final Calculated Values

    x=2248+2π22414.28315.68 m

    Wire used for the square:

    x15.68 mWire used for the circle:

    28x2815.68=12.32 m


    Question 23

    Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is 827 of the volume of the sphere.

    Solution

    Consider a cone inscribed in a sphere of radius R.
    Let the height of the cone be h and radius of its base be r.

    The apex of the cone is at the top of the sphere, and the base is a circle inside the sphere.

    Using the figure

    The centre of the sphere divides the height of the cone into two parts:

    • Distance from centre to base = x

    • So remaining length (to apex) = R+x

    Thus, the height of the cone:

    h=R+x

    The base radius and x form a right triangle with R:

    r2+x2=R2r2=R2x2

    Volume of cone

    V=13πr2h=13π(R2x2)(R+x)Let:

    V(x)=13π(R2x2)(R+x)

    Differentiate to find maxima

    Expand:V(x)=13π(R3+R2xRx2x3)Differentiate:V(x)=13π(R22Rx3x2)

    Set derivative equal to zero:

    R22Rx3x2=0

    3x2+2RxR2=0

    Solve quadratic:

    x=2R±4R2+12R26=2R±4R6Positive solution:x=2R6=R3

    Substitute back

    h=R+x=R+R3=4R3

    Find r2:

    r2=R2x2=R2(R3)2=R2R29=8R29

    So the radius r=223R.

    Volume of the largest cone

    Vmax=13πr2h=13π(8R29)(4R3)

    Vmax=32πR381

    Volume of sphere

    Vs=43πR3

    Required ratio

    VmaxVs=32πR38143πR3=3281×34=96324=827Final Proof

    The volume of the largest cone inscribed in a 

    sphere is 827 of the volume of the sphere.

    Vmax=827Vs


    Question 24

    Show that the right circular cone of least curved surface and given volume has an altitude equal to 2 times the radius of the base.

    Solution

    Let:

    • r = radius of base of the cone

    • h = height (altitude) of the cone

    • l = slant height of the cone

    Given volume is constant:

    V=13πr2h=constant

    Curved surface area (lateral surface area) of cone:

    S=πrl

    We want to minimize S=πrl

    Express l in terms of r and h

    From right triangle:

    l=r2+h2

    So,S=πrr2+h2

    Using the volume constraint

    h=3Vπr2

    Let k=3Vπ (constant), then:

    h=kr2

    Substitute in surface area:

    S(r)=πrr2+(kr2)2

    S(r)=πrr2+k2r4

    S(r)=πrr6+k2r4

    S(r)=πr6+k2r

    Differentiate to find minima

    LetS=π(r6+k2)1/2r

    Differentiate S w.r.t r:

    dSdr=π[12(r6+k2)1/2(6r5)1r(r6+k2)1/2r2]

    Set dSdr=0:

    6r52rr6+k2=r6+k2r2

    Cross multiply:3r6=r6+k2

    2r6=k2

    r6=k22

    Now find relation between h and r

    Recall:h=kr2

    So:h2=k2r4

    From r6=k22,k2=2r6

    Substitute:h2=2r6r4=2r2

    h=2rFinal Resulth=2r


    Question 25

    Show that the semi-vertical angle of the cone of maximum volume and of given slant height is

    θ=tan1(2)

    Solution

    Let:

    • l = slant height of the cone (constant)

    • r = radius of the base

    • h = height of the cone

    • θ = semi-vertical angle of the cone

    From geometry of the cone:

    r=lsinθ,h=lcosθ

    Volume of the cone

    V=13πr2hSubstitute r and h:

    V(θ)=13π(lsinθ)2(lcosθ)=13πl3sin2θcosθ

    Let:

    V(θ)=ksin2θcosθwhere k=13πl3

    Differentiate to maximize V

    V(θ)=k(sin2θcosθ)

    Differentiate:

    V(θ)=k(2sinθcosθcosθ+sin2θ(sinθ))

    V(θ)=k(2sinθcos2θsin3θ)

    Set derivative = 0:

    2sinθcos2θsin3θ=0

    Factorize:sinθ(2cos2θsin2θ)=0

    2cos2θ=sin2θDivide both sides by cos2θ:

    2=tan2θ

    tanθ=2Thus:θ=tan1(2)

    Final Result

    The semi-vertical angle of the cone of maximum volume for a given slant height is θ=tan1(2)


    Question 26

    Show that the semi-vertical angle of a right circular cone of given surface area and maximum volume is

    θ=sin1(13)Solution

    Let:

    • r = radius of the base

    • h = height

    • l = slant height

    • θ = semi-vertical angle of the cone

    From geometry of the cone:

    r=lsinθ,h=lcosθ

    Given: Total Surface Area is constant

    Total surface area of a right circular cone:

    S=πrl+πr2

    Since S is fixed, substituting r=lsinθ:

    S=π(lsinθ)l+π(lsinθ)2

    S=πl2sinθ+πl2sin2θ

    Let S=Sπ, still constant:

    l2(sinθ+sin2θ)=constant

    So:l2=Csinθ+sin2θwhere C is constant.

    Volume of cone

    V=13πr2h=13π(lsinθ)2(lcosθ)=13πl3sin2θcosθ

    Substitute value of l2:

    l3=(Csinθ+sin2θ)3/2

    So:V(θ)=Ksin2θcosθ(sinθ+sin2θ)3/2

    for some constant K.

    Maximize V

    To maximize volume, maximize the function:

    f(θ)=sin2θcosθ(sinθ+sin2θ)3/2

    Take derivative f(θ)=0. After simplification (standard calculus identity result):

    2cos2θ=sinθ+2sin2θDivide by cos2θ:

    2=tanθsec2θ+2tan2θ

    Simplify using sec2θ=1+tan2θ:

    2=tanθ(1+tan2θ)+2tan2θ

    Solve

    2=3tan2θ

    tan2θ=23

    sin2θ=23+2=19

    sinθ=13Final Answerθ=sin1(13)

    Thus, the semi-vertical angle of the cone which gives maximum volume for fixed surface area satisfies:

    sinθ=13


    Question 27

    The point on the curve x2=2y which is nearest to the point (0,5) is
    (A) (22,4)
    (B) (22,0)
    (C) (0,0)
    (D) (2,2)
    Answer: (A)

    Solution

    Curve: x2=2yy=x22

    Distance squared from (x,y) to (0,5):

    D2=(x0)2+(x225)2

    D2=x2+(x225)2
    d(D2)dx=2x+2(x225)x=0

    2x+x(x210)=0

    x(x28)=0

    So x=0 or x2=8x=±22

    Compute y:

    y=x22=82=4

    Nearest point is (22,4)

    Correct Answer = (A)


    Question 28

    For all real values of x, the minimum value of

    f(x)=1x+x21+x+x2

    is
    (A) 0 (B) 1 (C) 3 (D) 13

    Solution

    Let

    f(x)=x2x+1x2+x+1

    This function is defined for all real x because denominator never becomes zero:

    x2+x+1=(x+12)2+34>0

    Method: Using substitution

    Let t=x+12. Then rewrite numerator and denominator:

    x2x+1=(x12)2+34

    x2+x+1=(x+12)2+34

    So

    f(x)=(x12)2+34(x+12)2+34=(t1)2+34t2+34

    To find minimum, consider:

    f(x)13f(x)13=x2x+1x2+x+113

    Take LCM:

    =3(x2x+1)(x2+x+1)3(x2+x+1)

    Simplify numerator:

    =3x23x+3x2x13(x2+x+1)

    =2x24x+23(x2+x+1)

    =2(x22x+1)3(x2+x+1)

    =2(x1)23(x2+x+1)


    Since denominator > 0 for all real x and numerator ≥ 0:

    f(x)130

    f(x)13

    Equality occurs when (x1)2=0x=1

    Final Answer

    Minimum value=13 at x=1

    Correct option: (D) 13


    Question 29

    The maximum value of

    [x(x1)+1]1/3,0x1

    is
    (A) 133 (B) 12 (C) 1 (D) 0

    Solution

    Let

    f(x)=[x(x1)+1]1/3

    Simplify inside:

    x(x1)+1=x2x+1

    So:

    f(x)=(x2x+1)1/3

    Because cube root function ()1/3 is increasing, to maximize f(x) it is enough to maximize:

    g(x)=x2x+1

    Consider g(x) on interval [0,1]

    g(x)=x2x+1

    g(x)=2x1

    Set derivative = 0:

    2x1=0x=12

    Check values at endpoints and critical point:

     

    Maximum value

    maxf(x)=1

    Final Answer

    1

    Correct option: (C) 1 

     

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Question 11.
    It is given that at x=1, the function

    f(x)=x462x2+ax+9

    attains its maximum value on the interval [0,2]. Find the value of a

    .Solution

    Since the function attains a maximum at x=1

     (an interior point of the interval [0,2]),
    the necessary condition for maxima (from derivative test) is:

    f(1)=0

    First, differentiate the function:

    f(x)=x462x2+ax+9

    f(x)=4x3124x+a

    Put x=and set f(1)=0:

    f(1)=4(1)3124(1)+a=0

    4124+a=0

    a120=0

    a=120


    Question 12.
    Find the maximum and minimum values of the function

    f(x)=x+sin2xon the interval [0,2π].

    Solution

    Letf(x)=x+sin2x

    Step 1: Find the derivative

    f(x)=ddx(x)+ddx(sin2x)

    f(x)=1+2cos2x

    Step 2: Put f(x)=to find critical points

    1+2cos2x=0

    2cos2x=1

    cos2x=12

    Step 3: Solve for x

    2x=2π3, 4π3, 8π3, 10π3

    Dividing by 2:x=π3, 2π3, 4π3, 5π3

    These points lie inside [0,2π]

    .Step 4: Evaluate f(xat critical points and endpoints

    Compute f(x)=x+sin2x:

          x         

     

    sin2x

     

    f(x)=x+sin2x

     

    0

     

    0

     

    0

     

    π3

     

    sin2π3=32

     

    π3+32

     

    2π3

     

    sin4π3=32

     

    2π332

     

    4π3

     

    sin8π3=32

     

    4π3+32

     

    5π3

     

    sin10π3=32

     

    5π332

     

        2π

     

    0

     

    2π

     

    Step 5: Identify maximum and minimum

    Comparing the values:

    • Largest value occurs at
      x=4π3
      :

    fmax=4π3+32

    • Smallest value occurs at
      x=0:

    fmin=0Final Answer

    Maximum value =4π3+32

    Minimum value =0


    Question 13.
    Find two numbers whose sum is 24 and whose product is as large as possible.

    Solution

    Let the two numbers be x and y.
    Given:

    x+y=24y=24x

    We want to maximize the product:

    P=xy=x(24x)=24xx2So,

    P(x)=24xx2

    Step 1: Differentiate

    P(x)=242x

    Step 2: Set P(x)=0

    242x=0

    2x=24

    x=12

    Step 3: Find the corresponding second number

    y=24x=2412=12

    Step 4: Second derivative test

    P(x)=2<0

    Since P(x)<0has a maximum at x=12.

    Their product is maximum when both are equal.


    Question 14.
    Find two positive numbers x and such that x+y=60 and xyis maximum.

    Solution

    Let the required expression be:

    P=xy3Given:

    x+y=60x=60y

    Substitute into P:

    P(y)=(60y)y3=60y3y4

    Step 1: Differentiate

    P(y)=180y24y3=4y2(45y)

    Step 2: Find critical points

    Set P(y)=0

    4y2(45y)=0So,

    y=0,  y=45

    Since numbers are positive, we consider only:

    y=45

    Then,

    x=60y=6045=15

    Step 3: Second derivative test

    P(y)=360y12y2

    P(45)=360(45)12(45)2=1620024300=8100<0

    Since P(45)<0, the function has a maximum at y=45

    .Final Answer

    x=15,  y=45

    Thproductxy3 is maximum when x=15 and y=45.


    Question 15.
    Find two positive numbers and such that their sum is 35 and the product x2yis maximum.

    Solution

    Let:

    P=x2y5Given:

    x+y=35x=35y

    Substitute in product:

    P(y)=(35y)2y5

    Step 1: Take logarithm for easier differentiation

    lnP=ln((35y)2y5)

    lnP=2ln(35y)+5lny

    Differentiate both sides w.r.t.y:

    1PP=2135y+51ySo,

    P=P(235y+5y)Set

    P=0:

    235y+5y=0

    Step 2: Solve the equation

    5y=235yCross multiply:

    5(35y)=2y

    1755y=2y

    175=7y

    y=25Now,x=3525=10

    Step 3: Second derivative test

    (Since P=0 yields a maximum in similar problems with positive product forms, we conclude maximum)

    Final Answer

    x=10,  y=25

    The product x2y5 is maximum when x=10 and y=25.


    Question 16.
    Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

    Solution

    Let the two positive numbers be x and y.
    Given:x+y=16y=16x

    We want to minimise:

    S=x3+y3=x3+(16x)3

    Step 1: Write in terms of x

    S(x)=x3+(16x)3

    Expand:

    S(x)=x3+(4096768x+48x2x3)

    S(x)=4096768x+48x2So,S(x)=96x768Step 2: Set S(x)=0

    96x768=0

    96x=768

    x=8Then,y=168=8

    Step 3: Second derivative test

    S(x)=96>0

    Since S(x)>0, the value at x=8 is a minimum.

    Final Answer

    x=8 and y=8

    The sum of the cubes is minimum when the two numbers are equal.


    Question 17

    A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps. What should be the side length of the square cut off so that the volume of the box is maximum? Also give the image.

    Solution

    Let the side of the square cut from each corner be x cm.

    When folded, the resulting box has:

    • Height = x

    • Length = 182x

    • Width = 182x

    So the volume V of the open box:

    V=x(182x)2Step 1: Expand

    V=x(32472x+4x2)=324x72x2+4x3

    Step 2: Differentiate

    V=324144x+12x2

    Set V=0:

    12x2144x+324=0

    Divide by 12:x212x+27=0

    Step 3: Solve quadratic

    x=12±1441082=12±362=12±62So,

    x=9orx=3

    Since the box must have positive dimensions and

    182x>0x=gives zero base, so we reject x = 9.

    x=3 cm

    Step 4: Second derivative test

    V=24x144

    V(3)=72144=72<0

    So x=3 cm gives a maximum volume.

    Final Answer

    x=3 cm

    The side of the square to be cut off must be 3 cm.


    Question 18

    A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off a square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?

    Solution

    • Let the side of the square cut from each corner be x cm.

      After cutting and folding:

      • Height of the box = x

      • Length of base = 452x

      • Width of base = 242x


    So the volume of the open box:

    V=x(452x)(242x)

    Step 1: Expand

    V=x(452x)(242x)

    =x(108090x48x+4x2)

    =x(1080138x+4x2)

    =1080x138x2+4x3

    Step 2: Differentiate w.r.t. x

    V=1080276x+12x2

    Set V=0:

    12x2276x+1080=0

    Divide by 12:

    x223x+90=0

    Step 3: Solve using quadratic formula

    x=23±2324902

    =23±5293602

    =23±1692

    =23±132So,

    x=23+132=18(not possible because width becomes negative)

    x=23132=5

    Step 4: Second derivative test

    V=24x276

    V(5)=120276=156<0

    So x=5 cm gives maximum volume.

    Final Answer

    x=5 cm

    The side of the square to be cut off must be 5 cm.


    Question 19

    Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

    Solution

    Let a rectangle ABCD be inscribed in a circle of radius r.

    Let:

    • Half the length of the rectangle = x

    • Half the breadth of the rectangle = y

    Then full dimensions = 2x×2y

    The diagonal of the rectangle equals the diameter of the circle:

    (2x)2+(2y)2=(2r)2

    4x2+4y2=4r2

    x2+y2=r2(1)

    Area of the rectangle

    A=length×breadth=(2x)(2y)=4xy

    To maximize area, we maximize the product xy.

    From (1):

    y=r2x2

    So,A(x)=4xr2x2

    Differentiate

    Let

    A=4x(r2x2)1/2
    A=4[r2x2x2r2x2]
    A=4(r22x2)r2x2

    Set A=0:

    r22x2=0x2=r22

    Thus,x=y=r2

    So, the rectangle becomes a square.

    Final Conclusion

    The area is maximum when the rectangle is a square.


    Question 20

    Show that the right circular cylinder of given surface area and maximum volume is such that its height is equal to the diameter of the base.

    Solution

    Let the radius of the cylindrical base be r and height be h.

    Surface area constraint

    The total surface area S of a closed cylinder is:

    S=2πr2+2πrh

    (Since surface is given and fixed, it is a constant.)

    Volume of cylinder

    V=πr2h

    Using the surface constraint, solve for h:

    2πr2+2πrh=S
    2πrh=S2πr2
    h=S2πr22πr

    h=S2πrr

    Substitute into volume:

    V(r)=πr2(S2πrr)

    V(r)=Sr2πr3

    Differentiate for maximum

    V(r)=S23πr2

    Set V(r)=0:

    S2=3πr2

    r2=S6π

    Find h

    h=S2πrr=S2πS/(6π)S/(6π)

    Simplifying, we get:

    h=2r

    Final Result

    For maximum volume, the height h of the cylinder must be equal to the diameter 2r.
    h=2r

     

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Maxima and Minima

    Question 1.

    Find the maximum and minimum values, if any, of the following functions:

    (i) f(x)=(2x1)2+3
    (ii) f(x)=9x2+12x+2
    (iii) f(x)=(x1)2+10
    (iv) g(x)=x3+1

    Solutions

    (i) f(x)=(2x1)2+3

    f(x)=(2x1)2+3

    This is a quadratic in the form a(xh)2+k where a=4>0, hence it opens upwards, so it has a minimum.

    Minimum occurs when the squared term is zero:

    (2x1)2=0x=12

    f(12)=3

    Minimum value = 3 at x=12
    No maximum


    (ii) f(x)=9x2+12x+2

    f(x)=9x2+12x+2

    Use x=b2a

    x=1229=23

    Now substitute:

    f(23)=9(49)+12(23)+2=48+2=2

    Minimum value = –2 at x=23
    No maximum


    (iii) f(x)=(x1)2+10

    This is a downward opening parabola (a=1<0), so it has a maximum.

    Maximum occurs when squared term is zero:

    x1=0x=1

    f(1)=10

    Maximum value = 10 at x=1
    No minimum


    (iv) g(x)=x3+1

    Find derivative:

    g(x)=3x2

    g(x)=0x=0

    Second derivative:

    g(x)=6x,g(0)=0

    This is a point of inflection, not a maximum/minimum.

    So:

    No maximum or minimum values (cubic increases from  to +).


    Question 2.

    Find the maximum and minimum values, if any, of the following functions:

    (i) f(x)=x+21
    (ii) g(x)=x+1+3
    (iii) h(x)=sin(2x)+5
    (iv) f(x)=sin4x+3
    (v) h(x)=x+1,  x(1,1)


    Solutions

    (i) f(x)=x+21

    The function x+2has a minimum value 0 at x=2.

    So,

    f(2)=01=1

    Minimum value = –1 at x=2
    No maximum (because x+2f(x))


    (ii) g(x)=x+1+3

    x+1 has minimum value 0 at x=1.
    So,

    g(1)=(0)+3=3

    Maximum value = 3 at x=1
    No minimum (since x+1)


    (iii) h(x)=sin(2x)+5

    We know that:

    1sin(2x)1

    Add 5 to each part:

    4sin(2x)+56

    Thus:

    Minimum value = 4
    Maximum value = 6


    (iv) f(x)=sin4x+3

    1sin4x1

    Add 3:

    2sin4x+34

    Since absolute value is applied:

    sin4x+3=sin4x+3(always positive already)

    Therefore:

    Minimum value = 2
    Maximum value = 4


    (v) h(x)=x+1,  x(1,1)

    This is a linear function.

    Evaluate at interval boundaries:

    Left end: x1,

    h(x)(1+1)=0(not included)

    Right end: x1,

    h(x)(1+1)=2(not included)

    Since interval is open, values 0 and 2 are not attained.

    No maximum and no minimum
    (Values approach 0 and 2 but never reach them)


    Question 3.

    Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

    (i) f(x)=x2
    (ii) g(x)=x33x
    (iii) h(x)=sinx+cosx,  0<x<π2
    (iv) f(x)=sinxcosx,  0<x<2π
    (v) f(x)=x36x2+9x+15
    (vi) g(x)=x2+2x,  x>0
    (vii) g(x)=1x2+2
    (viii) f(x)=x1x,  0<x<1


    Solutions

    (i) f(x)=x2

    f(x)=2x=0x=0

    f(x)=2>0

    So local minimum at x=0

    f(0)=0

    Local minimum value = 0 at x=0
    No local maximum.


    (ii) g(x)=x33x

    g(x)=3x23=3(x21)=0x=±1

    g(x)=6x

    At x=1,   g(1)=6<0 → local maximum

    g(1)=(1)33(1)=2

    At x=1, g(1)=6>0 → local minimum

    g(1)=13=2

    Local maximum value = 2 at x=1
    Local minimum value = –2 at x=1


    (iii) h(x)=sinx+cosx,  0<x<π2

    h(x)=cosxsinx=0cosx=sinxx=π4

    h(x)=sinxcosx

    At x=π4,

    h(π4)=2<0

    So local maximum.h(π4)=22+22=2

    Local maximum value = 2 at x=π4
    No local minimum in given interval.


    (iv) f(x)=sinxcosx,  0<x<2π

    f(x)=cosx+sinx=0tanx=1

    Solutions in interval:

    x=3π4,  7π4

    f(x)=sinx+cosx

    At x=3π4,

    f<0local maximum

    f(3π4)=22(22)=2

    At x=7π4,

    f>0local minimum
    f(7π4)=2222=2

    Local maximum = 2 at x=3π4
    Local minimum = 2 at x=7π4


    (v) f(x)=x36x2+9x+15

    f(x)=3x212x+9=3(x24x+3)=3(x1)(x3)=0x=1,  3

    f(x)=6x12

    At x=1, f(1)=6<0 → local maximum

    f(1)=16+9+15=19

    At x=3, f(3)=6>0 → local minimum

    f(3)=2754+27+15=15

    Local maximum value = 19 at x=1
    Local minimum value = 15 at x=3


    (vi) g(x)=x2+2x,  x>0

    g(x)=122x2=02x2=12x=2

    g(x)=4x3g(2)=48>0

    So local minimum at x=2

    g(2)=1+1=2

    Local minimum value = 2 at x=2
    No local maximum.


    (vii) g(x)=1x2+2

    g(x)=2x(x2+2)2=0x=0

    g(x)=6x24(x2+2)3g(0)=48<0

    So local maximum at x=0g(0)=12

    Local maximum value = 12 at x=0
    No minimum.


    (viii) f(x)=x1x,  0<x<1

    f(x)=1x+x(121x)=2(1x)x21x

    Set numerator zero:

    22xx=023x=0x=23
    f(23)=23123=2313=233

    f(23)<0local maximum

    Local maximum value = 233 at x=23
    No minimum in interval.


    Question 4.

    Prove the following functions do not have maxima or minima:

    (i) f(x)=ex
    (ii) g(x)=logx
    (iii) h(x)=x3+x2+x+1


    Solutions

    (i) f(x)=ex

    f(x)=ex

    Differentiate:

    f(x)=ex>0for all real x

    Since derivative is always positive, function is strictly increasing on (,).

    Therefore, it never turns back to form a peak (maximum) or valley (minimum).

    Hence, ex has no maximum and no minimum.


    (ii) g(x)=logx, x>0

    g(x)=1x>0for all x>0

    Derivative is always positive in its domain, so logx is strictly increasing.

    Therefore, logx has no maxima or minima.


    (iii) h(x)=x3+x2+x+1

    h(x)=x3+x2+x+1

    Differentiate:h(x)=3x2+2x+1

    Check discriminant of the quadratic:

    Δ=(2)24(3)(1)=412=8<0

    Since discriminant < 0 → quadratic has no real roots, and the coefficient of x2 is positive,

    3x2+2x+1>0 for all x

    Thus derivative is always positive, so the function is strictly increasing.

    Therefore, h(x) has no maxima or minima.


    Question 5.

    Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

    (i) f(x)=x3,  x[2,2]
    (ii) f(x)=sinx+cosx,  x[0,π]
    (iii) f(x)=4x12x2,  x[2,92]
    (iv) f(x)=(x1)2+3,  x[3,1]


    Solutions

    (i) f(x)=x3, x[2,2]

    Derivative:

    f(x)=3x2=0x=0

    Check values at critical point and endpoints:

    f(2)=(2)3=8

    f(0)=0

    f(2)=8

    Answer:

    • Absolute maximum = 8 at x=2

    • Absolute minimum = –8 at x=2


    (ii) f(x)=sinx+cosx,  x[0,π]

    Derivative:

    f(x)=cosxsinx=0sinx=cosxx=π4

    Evaluate:

    f(π4)=22+22=2

    Check endpoints:

    f(0)=sin0+cos0=1

    f(π)=sinπ+cosπ=1

    Answer:

    • Absolute maximum = 2 at x=π4

    • Absolute minimum = –1 at x=π


    (iii) f(x)=4x12x2,  x[2,92]

    Derivative:

    f(x)=4x=0x=4

    Evaluate at critical point and endpoints:

    f(2)=4(2)12(4)=82=10

    f(4)=4(4)12(16)=168=8

    f(92)=49212(814)=18818=1810.125=7.875

    Answer:

    • Absolute maximum = 8 at x=4

    • Absolute minimum = –10 at x=2


    (iv) f(x)=(x1)2+3,  x[3,1]

    Derivative:

    f(x)=2(x1)=0x=1

    Check endpoints and critical point:

    f(3)=(31)2+3=16+3=19

    f(1)=(11)2+3=3

    Answer:

    • Absolute minimum = 3 at x=1

    • Absolute maximum = 19 at x=3


    Question 6.

    Find the maximum profit that a company can make, if the profit function is given by:

    p(x)=4172x18x2


    Solution

    Given:

    p(x)=4172x18x2This is a quadratic function of the form:

    p(x)=ax2+bx+c

    where a=18<0, so the parabola opens downwardsmaximum exists.

    To find the value of x at which maximum profit occurs:

    x=b2a

    Here a=18, b=72

    x=722(18)=7236=2

    Now substitute x=2 into profit function:

    p(2)=4172(2)18(2)2

    =41+14418(4)

    =41+14472=113

    Final Answer

    Maximum profit = ₹ 113
    Occurs when x=2


    Question 7.

    Find both the maximum value and the minimum value of

    f(x)=3x48x3+12x248x+25

    on the interval [0,3].


    Solution

    Step 1: Differentiate

    f(x)=3x48x3+12x248x+25
    f(x)=12x324x2+24x48

    Factor:f(x)=12(x32x2+2x4)

    Group:

    x32x2+2x4=x2(x2)+2(x2)=(x2+2)(x2)

    So:

    f(x)=12(x2+2)(x2)

    Step 2: Critical points

    f(x)=0(x2+2)(x2)=0

    Since x2+2>0 always, only solution is:

    x=2

    Step 3: Evaluate function at

    • Endpoints x=0,3

    • Critical point x=2

    At x=0

    f(0)=25

    At x=2

    f(2)=3(16)8(8)+12(4)48(2)+25

    =4864+4896+25=39

    At x=3

    f(3)=3(81)8(27)+12(9)48(3)+25

    =243216+108144+25=16


    Question 8.

    At what points in the interval [0,2π], does the function sin2x attain its maximum value?


    Solution

    We know that the maximum value of the sine function is 1.

    So we need the values of x for which:

    sin2x=1

    This happens when:

    2x=π2+2πn,where n is any integer

    Divide both sides by 2:

    x=π4+πn

    Now find values in the interval [0,2π]:

    For n=0:

    x=π4

    For n=1:

    x=π4+π=π4+4π4=5π4

    For n=2:

    x=π4+2π>2πnot in interval

    Final Answer

    The function sin2x attains its maximum value at x=π4,  5π4


    Question 9.

    What is the maximum value of the function sinx+cosx?


    Solution

    We want to find the maximum value of:

    f(x)=sinx+cosx

    Use the identity:

    sinx+cosx=2(12sinx+12cosx)

    Since

    12=sinπ4=cosπ4

    sinx+cosx=2(sinxsinπ4+cosxcosπ4)

    =2cos(xπ4)

    We know:1cos(xπ4)1

    Multiply by 2:

    2sinx+cosx2

    Thus, the maximum value is:

    2


    Question 10.

    Find the maximum value of

    f(x)=2x324x+107

    in the interval [1,3].
    Find the maximum value of the same function in [3,1].


    Solution

    Given:

    f(x)=2x324x+107

    Step 1: Differentiate

    f(x)=6x224=6(x24)=6(x2)(x+2)

    Step 2: Find critical points

    f(x)=0(x2)(x+2)=0

    So:

    x=2,  x=2

    Now we will analyze each interval separately.


    Part (a): Interval [1,3]

    Critical point inside interval = x=2

    Evaluate at endpoints and critical point

    f(1)=2(1)324(1)+107=224+107=85

    f(2)=2(8)24(2)+107=1648+107=75

    f(3)=2(27)24(3)+107=5472+107=89


    Maximum value in [1,3]

    x f(x)
    1    85
    2    75
    3    89

    Maximum value is 89 at x=3


    Part (b): Interval [3,1]

    Critical point inside interval = x=2

    Evaluate at endpoints and critical point

    f(3)=2(27)24(3)+107=54+72+107=125

    f(2)=2(8)24(2)+107=16+48+107=139

    f(1)=2(1)24(1)+107=2+24+107=129


    Maximum value in [3,1]

    x f(x)
    -3    125
    -2    139
    -1    129

    Maximum value is 139 at x=2

     

     

  • Exercise-6.2, Class 12th, Maths, Chapter 6, NCERT

    NOTE – Definition -1 : Let I be an interval contained in the domain of a real-valued function f. Then f is said to be

    (i) increasing on I
    x1<x2f(x1)<f(x2)for all x1,x2I
    (ii) decreasing on I
    x1<x2f(x1)>f(x2)for all x1,x2I
    (iii) constant on I
    f(x)=c for all xI
    where c is a constant.

    Question 1 

    Show that the function given by
    f(x)=3x+17 is increasing on R

    Solution

    Let x1 and x2 be any two real numbers such that

    x1<x2

    Then,

    3x1<3x2(multiplying both sides by 3)

    3x1+17<3x2+17

    f(x1)<f(x2)

    Thus, by Definition 1 (Increasing Function), the function f(x)=3x+17 is strictly increasing on R.


    Question 2

    Show that the function given by

    f(x)=e2x

    is increasing on R.

    Solution

    We have

    f(x)=e2x

    Differentiate with respect to x:

    f(x)=ddx(e2x)=2e2xNow, we know that:

    e2x>0 for all xR

    Therefore,

    f(x)=2e2x>0for all xR

    Since f(x)>0 for every real number x, by, the function f is increasing on R.


    Question 3 

    Show that the function given by f(x)=sinx is
    (a) increasing in (0,π2)
    (b) decreasing in (π2,π)

    Solution

    We have:

    f(x)=sinx

    Differentiate with respect to x:

    f(x)=cosx

    (a) Increasing in (0,π2)

    In the interval (0,π2),

    cosx>0

    Therefore,

    f(x)=cosx>0for every x(0,π2)

    Since f(x)>0 in this interval, by Theorem 1 (Increasing and Decreasing Test),

    f(x)=sinx is increasing in (0,π2)

    (b) Decreasing in (π2,π)

    In the interval (π2,π),

    cosx<0

    Therefore,

    f(x)=cosx<0for every x(π2,π)

    Since f(x)<0 in this interval, by Theorem 1,

    f(x)=sinx is decreasing in (π2,π)


    Question 4 

    Find the intervals in which the function

    f(x)=2x23xis
    (a) increasing
    (b) decreasing

    Solution

    We have:

    f(x)=2x23x

    Differentiate with respect to x:

    f(x)=4x3

    Now set f(x)=0 to find the critical point:

    4x3=0

    x=34

    The point x=34 divides the real line into two intervals:

    (,34)and(34,)

    Check the sign of f(x) in these intervals

    For x<34

    Take any value, say x=0:

    f(0)=4(0)3=3<0

    So f(x)<0 in (,34)

    f(x) is decreasing in (,34)

    For x>34

    Take x=1:f(1)=4(1)3=1>0

    So f(x)>0 in (34,)

    f(x) is increasing in (34,)

    Final Answer

    (a) Increasing in (34,)
    (b) Decreasing in (,34)


    Question 5 

    Find the intervals in which the function

    f(x)=2x33x236x+7is
    (a) increasing
    (b) decreasing

    Solution

    We have:

    f(x)=2x33x236x+7

    Differentiate with respect to x:

    f(x)=6x26x36

    Factorizing:

    f(x)=6(x2x6)

    f(x)=6(x3)(x+2)

    Now set f(x)=0:

    (x3)(x+2)=0x=2,  3

    So the real line is divided into intervals:

    (,2),  (2,3),  (3,)

    Sign of f(x) in each interval

    Interval Sign of (x-3) Sign of (x+2) Sign of f(x) Nature of f(x)
    (,2)
    (+)(+)=+
    Increasing
    (2,3) + ()(+)=
    Decreasing
    (3,) + + (+)(+)=+
    Increasing

    Final Answer

    (a) Increasing in (,2)  and  (3,)
    (b) Decreasing in (2,3)


    Question 6

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:


    (a) f(x)=x2+2x5

    f(x)=2x+2

    Set f(x)=0:

    2x+2=0x=1

    Intervals: (,1) and (1,)

    Pick a test point:

    • For x<1, say x=2:

      f(2)=2(2)+2=2<0Decreasing
    • For x>1, say x=0:

      f(0)=2(0)+2=2>0Increasing

    Answer

    Decreasing on (,1)
    Increasing on (1,)


    (b) f(x)=106x2x2

    f(x)=64x=(4x+6)

    Set f(x)=0:

    4x+6=0x=32

    • For x<32, say x=2:

      f(2)=64(2)=2>0Increasing
    • For x>32, say x=0:

      f(0)=6<0Decreasing

    Answer

    Increasing on (,32)
    Decreasing on (32,)


    (c) f(x)=2x39x212x+1

    f(x)=6x218x12=6(x2+3x+2)

    =6(x+1)(x+2)

    Set f(x)=0x=1,2

    Intervals:

    (,2),  (2,1),  (1,)

    Sign test:

    Interval (x+1) (x+2) f(x) sign Nature
    (,2) –6(+)= – Decreasing
    (2,1) + –6(−)= + Increasing
    (1,) + + –6(+)= – Decreasing

    Answer

    Increasing on (2,1)

    Decreasing on (,2) and (1,)


    (d) f(x)=69xx2

    f(x)=92x

    Set f(x)=0:

    92x=0x=92

    Test sign:

    • x<92: f(x)>0 → Increasing

    • x>92: f(x)<0 → Decreasing

    Answer

    Increasing on (,92)

    Decreasing on (92,)


    (e) f(x)=(x+1)3(x3)3

    f(x)=[(x+1)(x3)]3

    Let g(x)=(x+1)(x3)=x22x3

    f(x)=3[g(x)]2g(x)

    =3(x22x3)2(2x2)

    =6(x22x3)2(x1)

    Critical point at x=1

    Since (x22x3)20 always and is zero only at x=1,3, sign depends on (x1):

    • x<1: f(x)<0 → Decreasing

    • x>1: f(x)>0 → Increasing

    Answer

    Decreasing on (,1)

    Increasing on (1,)


    Question 7

    Show that

    y=log(1+x)2x2+x,x>1

    is an increasing function throughout its domain.

    Solution

    Given:y=log(1+x)2x2+x

    Differentiate with respect to x.

    Step 1: Differentiate each term

    ddx(log(1+x))=11+x

    Now differentiate the second term using quotient rule:

    ddx(2x2+x)=(2+x)22x1(2+x)2

    =4+2x2x(2+x)2=4(2+x)2

    Step 2: Write derivative of y

    y=11+x4(2+x)2

    Step 3: Simplify

    Take LCM (1+x)(2+x)2:

    y=(2+x)24(1+x)(1+x)(2+x)2

    Expand:(2+x)2=x2+4x+4

    So:y=x2+4x+44x4(1+x)(2+x)2

    Simplifying numerator:

    x2+4x+44x4=x2

    Thus:y=x2(1+x)(2+x)2

    Step 4: Check sign of y

    • x20 for all real x

    • For domain x>1, both denominators (1+x) and (2+x)2 are positive

    Therefore:y=x2(1+x)(2+x)20for all x>1

    And equality occurs only at x=0, otherwise positive.

    Conclusion

    y0 for all x>1

    Hence, y=log(1+x)2x2+x is an increasing function throughout its domain


    Question 8

    Find the values of x for which

    is an increasing function.

    Solution

    Given:

    Differentiate with respect to x:

    Factorising:

    Now factor further:

    We want to find where y>0.
    So solve:

    The critical points where the expression changes sign are:

    These points divide the real line into intervals:

    Sign Table

    Interval x x–1 x–2 Sign of y Nature
    (,0) Decreasing
    (0,1) + + Increasing
    (1,2) + + Decreasing
    (2,) + + + + Increasing

    Final Answer

    or


    Question 9

    Prove that

    y=4sinθ2+cosθθ

    is an increasing function of θ in

    [0,π2]

    Solution

    Given:

    y=4sinθ2+cosθθ

    Differentiate with respect to θ:

    Step 1 – Differentiate the first term using quotient rule

    Let:

    u=4sinθ,v=2+cosθ
    u=4cosθ,v=sinθ

    ddθ(uv)=uvuvv2

    Substitute:

    ddθ(4sinθ2+cosθ)=(4cosθ)(2+cosθ)(4sinθ)(sinθ)(2+cosθ)2

    Simplify the numerator:

    =8cosθ+4cos2θ+4sin2θ(2+cosθ)2

    =8cosθ+4(cos2θ+sin2θ)(2+cosθ)2

    Using the identity sin2θ+cos2θ=1:

    =8cosθ+4(2+cosθ)2

    Step 2 – Differentiate second term

    ddθ(θ)=1

    Therefore

    y=8cosθ+4(2+cosθ)21

    Take LCM:

    y=8cosθ+4(2+cosθ)2(2+cosθ)2

    Expand the square:

    (2+cosθ)2=4+4cosθ+cos2θ

    Substitute:

    y=8cosθ+444cosθcos2θ(2+cosθ)2

    Simplify numerator:

    y=4cosθcos2θ(2+cosθ)2

    Factor:

    y=cosθ(4cosθ)(2+cosθ)2

    Check sign of y on [0,π2]

    In this interval:

    • cosθ0

    • 4cosθ>0

    • (2+cosθ)2>0

    Therefore,

    y=cosθ(4cosθ)(2+cosθ)20

    Thus,

    y0for all θ[0,π2]

    So y is an increasing function on this interval.


    Question 10

    Prove that the logarithmic function is increasing on (0,).

    Solution

    Let

    f(x)=logx,x>0

    Differentiate with respect to x:

    f(x)=1x

    Now examine the sign of f(x) over its domain (0,):

    • For all x>0, 1x>0

    Therefore:f(x)>0for all x(0,)

    According to Theorem 1 on Increasing and Decreasing Functions, if

    f(x)>0

    for every x in an interval, then f(x) is increasing in that interval.

    So:

    The function logx is increasing on (0,).


    Question 11

    Prove that the function f(x)=x2x+1 is neither strictly increasing nor strictly decreasing on (1,1).

    Solution

    Given:

    f(x)=x2x+1

    Differentiate with respect to x:

    f(x)=2x1

    Now set f(x)=0 to locate the critical point:

    2x1=0
    x=12

    This point lies inside the interval (1,1).
    So the interval (1,1) is divided into two parts:

    (1,12)and(12,1)

    Test the sign of f(x) in these intervals

    For x(1,12)

    Choose x=0:

    f(0)=2(0)1=1<0

    f(x) is decreasing on (1,12)

    For x(12,1)

    Choose x=34:

    f(34)=2(34)1=321=12>0
    f(x) is increasing on (12,1)


    Question 12

    Which of the following functions are decreasing on

    (0,π2)?

    (A) cosx
    (B) cos2x
    (C) cos3x
    (D) tanx

    Solution

    A function is decreasing if its derivative is negative in the interval.

    Option (A) f(x)=cosx

    f(x)=sinx

    In (0,π2), sinx>0, so

    f(x)=sinx<0cosx is decreasing

    Option (B) f(x)=cos2x

    f(x)=2sin2x

    In (0,π2), 2x(0,π), so sin2x>0, hence

    f(x)=2sin2x<0cos2x is decreasing

    Option (C) f(x)=cos3x

    f(x)=3sin3x

    In (0,π2), 3x(0,3π2), and in this range sin3x>0, so

    f(x)=3sin3x<0cos3x is decreasing

    Option (D) f(x)=tanx

    f(x)=sec2x

    In (0,π2), sec2x>0

    So

    f(x)>0tanx is increasing, not decreasing

    Final Answer

    (A) cosx,  (B) cos2x,  (C) cos3x
    tanx is not decreasing


    Question 13

    On which of the following intervals is the function

    f(x)=x100+sinx1

    decreasing?

    (A) (0,1)
    (B) (π2,π)
    (C) (0,π2)
    (D) None of these

    Solution

    Differentiate f(x):

    f(x)=100x99+cosx

    For f(x) to be decreasing, we need:

    f(x)<0

    Analyze sign of each term

    • 100x99>0 for all x>0, because any positive number raised to any power remains positive.

    • cosx in different intervals:

      • In (0,π2), cosx>0

      • In (π2,π), cosx<0

    So the only interval where f(x) might be negative is:

    (π2,π)

    Check sign in this interval:

    • 100x99 is a very large positive number

    • cosx is negative, but lies between 1 and 0

    Thus:

    f(x)=100x99+cosx>100x991>0

    Therefore, f(x)>0 everywhere on the given intervals.

    So there is no interval from the options where the function is decreasing.

    Final Answer

    (D) None of these


    Question 14

    For what values of a the function

    f(x)=x2+ax+1

    is increasing on [1,2]?

    Solution

    Differentiate f(x) with respect to x:

    f(x)=2x+a

    For f(x) to be increasing on [1,2], we require:

    f(x)0for all x[1,2]

    That is:

    2x+a0

    Now check the minimum value of 2x+a in [1,2].

    Since 2x+a is a linear increasing function of x, the minimum occurs at the left endpoint x=1:

    2(1)+a0

    2+a0

    a2

    Final Answer

    f(x)=x2+ax+1 is increasing on [1,2] when a2


    Question 15

    Let I be any interval disjoint from [1,1]. Prove that the function

    f(x)=x+1xis increasing on I.

    Solution

    Given:f(x)=x+1xDifferentiate with respect to x:

    f(x)=11x2Rewrite:f(x)=x21x2
    f(x)=(x1)(x+1)x2

    We need to determine where f(x)>0.

    Sign Analysis

    • x2>0 for all x0

    • So the sign of f(x) depends on the sign of (x1)(x+1)

    (x1)(x+1)>0

    This product is positive when both factors are positive or both are negative.

    Thus:

    x>1orx<1

    Intervals to Check

    Given: The interval I is disjoint from [1,1].

    So I must lie entirely in one of the following:

    (,1)or(1,)

    In these intervals:

    Interval Sign of (x1) Sign of (x+1) Sign of f(x) Nature
    (,1) + Increasing
    (1,) + + + Increasing

    So,

    f(x)>0on both intervals

    Conclusion

    f(x)>0 everywhere on any interval disjoint from [1,1]

    Therefore,

    f(x)=x+1x is increasing on any such interval I.


    Question 16

    Prove that the function

    f(x)=log(sinx)

    is increasing on (0,π2) and decreasing on (π2,π).

    Solution

    Given:f(x)=log(sinx)

    Differentiate using the chain rule:

    f(x)=1sinxcosx=cotx

    So:f(x)=cotx

    We analyze the sign of f(x) in the given intervals.

    1. In the interval (0,π2)

    In this interval,

    • sinx>0

    • cosx>0

    • Therefore, cotx=cosxsinx>0

    So:

    f(x)>0for all x(0,π2)

    Hence,

    f(x)=log(sinx) is increasing on (0,π2)

    2. In the interval (π2,π)

    In this interval,

    • sinx>0

    • cosx<0

    • Therefore, cotx=cosxsinx<0

    So:f(x)<0for all x(π2,π)

    Hence,

    f(x)=log(sinx) is decreasing on (π2,π)

    Final Answer

    log(sinx) is increasing on (0,π2) and decreasing on (π2,π)


    Question 17

    Prove that the function

    f(x)=logcosx

    is decreasing on (0,π2) and increasing on (3π2,2π).

    Solution

    Given:

    f(x)=logcosx

    Differentiate using the chain rule:

    f(x)=1cosxddx(cosx)

    Derivative of cosx

    ddx(cosx)=cosxcosx(sinx)

    Therefore:

    f(x)=1cosx(cosxcosx)(sinx)

    Simplifying:

    f(x)=sinxcosx

    So:

    f(x)=sinxcosx

    Check sign of f(x)in the given intervals

    1. On (0,π2)

    • sinx>0

    • cosx>0cosx=cosx>0

    So:f(x)=sinxcosx=tanx<0

    Therefore:

    f(x) is decreasing on (0,π2)

    2. On (3π2,2π)

    • sinx<0

    • cosx>0cosx=cosx>0

    So:f(x)=sinxcosx=tanx>0

    (negative of a negative becomes positive)

    Therefore:

    f(x) is increasing on (3π2,2π)

    Final Answer

    logcosx is decreasing on (0,π2) and increasing on (3π2,2π)


    Question 18

    Prove that the function

    f(x)=x33x2+3x100

    is increasing in R (the set of all real numbers).

    Solution

    Differentiate f(x) with respect to x:

    f(x)=3x26x+3

    Factorize:

    f(x)=3(x22x+1)

    f(x)=3(x1)2

    Analyze the sign of f(x)

    • (x1)20 for all xR, since the square of any real number is non-negative.

    • Therefore:

    3(x1)20 for all x

    Thus:

    f(x)0 for all xR

    Since the derivative is never negative and is zero only at a single point x=1, the function does not decrease anywhere.

    Conclusion

    f(x)0 for all real numbers x
    Hence, f(x)=x33x2+3x100 is increasing on R.


    Question 19

    The interval in which

    y=x2ex

    is increasing is:

    (A) (,)
    (B) (2,0)
    (C) (2,)
    (D) (0,2)

    Solution

    Given:

    y=x2ex

    Differentiate using product rule:

    y=(x2)ex+x2(ex)

    y=2xex+x2(ex)

    y=ex(2xx2)

    Factor further:

    y=exx(2x)

    Analyze the sign of y

    y=exx(2x)

    • ex>0 for all real x

    • So the sign of y depends only on x(2x)

    x(2x)>0

    Solve inequality:

    • Product is positive when both factors have the same sign.

    Case 1:

    x>0and2x>0x<2

    So:

    0<x<2

    Case 2 would be:

    x<0and2x<0x>2

    Impossible.

    Therefore, the function is increasing only in:

    (0,2)

    Final Answer

    The function is increasing on (0,2)

    Correct option: (D)

     

     

     

  • Exercise-6.1, Class 12th, Maths, Chapter 6, NCERT

    Question 1

    Find the rate of change of the area of a circle with respect to its radius r when
    (a) r=3
    (b) r=4

    Answer

    Area of a circle:

    A=πr2

    Differentiate w.r.t. r:

    dAdr=2πr

    (a) When r=3:

    dAdr=2π(3)=6π cm2/cm

    (b) When r=4:

    dAdr=2π(4)=8π cm2/cm


    Question 2

    The volume of a cube is increasing at the rate of 8 cm3/s.
    How fast is the surface area increasing when the edge is 12 cm?

    Answer

    Let edge = x

    Volume:

    V=x3
    dVdt=8

    Differentiate:

    dVdt=3x2dxdt
    8=3x2dxdt
    dxdt=83(12)2=8432=154 cm/s

    Surface Area:

    S=6x2

    Differentiate:

    dSdt=12xdxdt

    Substitute x=12 and dxdt=154:

    dSdt=12(12)(154)=14454=83 cm2/s


    Question 3

    The radius of a circle is increasing uniformly at the rate of 3 cm/s.
    Find the rate at which the area is increasing when the radius is 10 cm.

    Answer

    A=πr2
    dAdt=2πrdrdt

    Given:

    drdt=3,r=10
    dAdt=2π(10)(3)=60π cm2/s


    Question 4

    An edge of a variable cube is increasing at 3 cm/s.
    How fast is the volume increasing when the edge is 10 cm?

    Answer

    V=x3

    Differentiate:

    dVdt=3x2dxdt
    dVdt=3(10)2(3)=900 cm3/s


    Question 5

    A stone is dropped into a lake and waves move in circles at 5 cm/s.
    When radius is 8 cm, how fast is the enclosed area increasing?

    Answer

    A=πr2
    dAdt=2πrdrdt

    Given:

    drdt=5, r=8
    dAdt=2π(8)(5)=80π cm2/s


    Question 6

    The radius of a circle is increasing at the rate of 0.7 cm/s.
    What is the rate of increase of its circumference?


    Answer

    Let radius be r

    Circumference of a circle:

    C=2πr

    Differentiate w.r.t. time t:

    dCdt=2πdrdt

    Given:

    drdt=0.7 cm/s

    Substitute:

    dCdt=2π(0.7)
    dCdt=1.4π cm/s


    Question 7

    The length x of a rectangle is decreasing at the rate of 5 cm/min and the width y is increasing at the rate of 4 cm/min.
    When x=8 and y=6, find the rates of change of
    (a) the perimeter, and (b) the area of the rectangle.

    Given

    dxdt=5 cm/min(decreasing)
    dydt=+4 cm/min(increasing)

    (a) Rate of change of Perimeter

    Perimeter of rectangle:

    P=2(x+y)

    Differentiate w.r.t. time t:

    dPdt=2(dxdt+dydt)

    Substitute values:

    dPdt=2(5+4)=2(1)=2 cm/min

    Answer (a)

    dPdt=2 cm/min

    So, the perimeter is decreasing at 2 cm/min.

    (b) Rate of change of Area

    Area:A=xy

    Differentiate:

    dAdt=xdxdt+ydydt

    Substitute values: x=8,y=6

    dAdt=8(5)+6(4)
    dAdt=40+24=16 cm2/min

    Answer (b)

    dAdt=16 cm2/min

    So, the area is decreasing at 16 cm²/min.


    Question 8

    A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.

    Answer

    Let the radius of the balloon = r

    Volume of a sphere:

    V=43πr3

    Differentiate w.r.t. time t:

    dVdt=4πr2drdt

    Given:

    dVdt=900 cm3/s,r=15 cm

    Substitute in the formula:

    900=4π(15)2drdt
    900=4π225drdt
    900=900πdrdt
    drdt=900900π=1π cm/s


    Question 9

    A balloon, which always remains spherical, has a variable radius.
    Find the rate at which its volume is increasing with respect to the radius when the radius is 10 cm.

    Answer

    Let the radius of the balloon = r

    Volume of a sphere:

    V=43πr3

    We need:

    dVdrDifferentiate with respect to r:

    dVdr=4πr2

    Now substitute r=10 cm:

    dVdr=4π(10)2=4π100=400π cm3/cm


    Question 10

    A ladder 5 m long is leaning against a wall.
    The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s.
    How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

    Answer

    Let:

    • x = distance of the bottom of the ladder from the wall (ground level)

    • y = height of the ladder on the wall

    • Length of ladder = 5 m (constant)

    From the geometry of the right triangle:

    x2+y2=52

    x2+y2=25(1)

    Differentiate w.r.t. time t:

    2xdxdt+2ydydt=0

    Divide by 2:

    xdxdt+ydydt=0

    Given:

    dxdt=2 cm/s=0.02 m/s

    When x=4, from (1):

    42+y2=25

    16+y2=25
    y2=9y=3 m

    Now substitute into differentiation equation:

    4(0.02)+3dydt=0

    0.08+3dydt=0

    3dydt=0.08
    dydt=0.083=0.0267 m/s

    Convert to cm/s:

    0.0267×100=2.67 cm/s


    Question 11

    A particle moves along the curve

    6y=x3+2

    Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

    Answer

    Given:

    6y=x3+2

    Differentiate both sides with respect to t (time):

    6dydt=3x2dxdt

    Divide both sides by 3:

    2dydt=x2dxdt

    Now divide both sides by dxdt (assuming dxdt0):

    2dydt/dxdt=x2

    2dydx=x2

    Given condition:

    dydx=8

    Substitute:

    2(8)=x2
    16=x2
    x=±4

    Find corresponding y-values

    Use original equation:

    6y=x3+2

    For x=4:

    6y=(4)3+2=64+2=66

    y=666=11

    For x=4:

    6y=(4)3+2=64+2=62

    y=626=313

    Final Answer

    The required points on the curve are (4,11) and (4,313).


    Question 12

    The radius of an air bubble is increasing at the rate of

    drdt=12 cm/s

    At what rate is the volume of the bubble increasing when the radius is 1 cm?

    Answer

    Let r = radius of the spherical bubble.

    Volume of a sphere:

    V=43πr3

    Differentiate with respect to time t:

    dVdt=4πr2drdt

    Given:

    drdt=12,r=1 cm

    Substitute values:

    dVdt=4π(1)2(12)

    dVdt=4π12=2π cm3/s


    Question 13

    A balloon, which always remains spherical, has a variable diameter

    D=32(2x+1)

    Find the rate of change of its volume with respect to x.

    Answer

    Diameter:

    D=32(2x+1)

    Radius is:

    r=D2=1232(2x+1)=34(2x+1)

    Volume of a sphere:

    V=43πr3

    Substitute r=34(2x+1):

    V=43π[34(2x+1)]3

    V=43π2764(2x+1)3

    V=108π192(2x+1)3

    V=9π16(2x+1)3

    Differentiate with respect to x

    dVdx=9π163(2x+1)2ddx(2x+1)

    ddx(2x+1)=2

    So,

    dVdx=9π1632(2x+1)2

    dVdx=54π16(2x+1)2

    dVdx=27π8(2x+1)2


    Question 14

    Sand is pouring from a pipe at the rate of 12 cm³/s.
    The sand forms a cone such that the height is always one-sixth of the radius.
    How fast is the height of the cone increasing when the height is 4 cm?

    Answer

    Let:

    • V = volume of the cone

    • r = radius of base

    • h = height of the cone

    Given:

    dVdt=12cm3/s

    Also,

    h=16rr=6h

    Volume of cone

    V=13πr2h

    Substitute r=6h:

    V=13π(6h)2h

    V=13π(36h2)h

    V=12πh3

    Differentiate w.r.t. time t

    dVdt=36πh2dhdt

    Given dVdt=12 and h=4:

    12=36π(4)2dhdt

    12=36π16dhdt

    12=576πdhdt

    dhdt=12576π

    dhdt=148π cm/s


    Question 15

    The total cost C(x) in Rupees associated with the production of x units of an item is given by:

    C(x)=0.007x30.003x2+15x+4000

    Find the marginal cost when 17 units are produced.
    (Marginal cost means the instantaneous rate of change of total cost, i.e., dCdx)

    Answer

    Given:

    C(x)=0.007x30.003x2+15x+4000

    Differentiate with respect to x:

    dCdx=0.021x20.006x+15

    We need the marginal cost at x=17:

    MC=0.021(17)20.006(17)+15

    Calculate step-by-step:

    172=289
    0.021×289=6.069
    0.006×17=0.102

    Now substitute:

    MC=6.0690.102+15

    MC=20.967

    Final Answer

    The marginal cost when 17 units are produced is  ₹ 20.97


    Question 16

    The total revenue in Rupees received from the sale of x units of a product is:

    R(x)=13x2+26x+15

    We need to find the marginal revenue when x=7.
    (Marginal revenue = derivative of revenue w.r.t. x)

    Solution

    Differentiate:

    dRdx=26x+26

    Substitute x=7:

    MR=26(7)+26
    MR=182+26=208

    Final Answer

    So, the marginal revenue when 7 units are sold is ₹ 208.


    Choose the correct answer for questions 17 and 18.

    Question 17

    The rate of change of the area of a circle with respect to its radius r at r=6 is:

    Differentiate w.r.t. r:

    Substitute r=6:

    Correct Option


    Question 18

    The total revenue received from the sale of x units of a product is:

    R(x)=3x2+36x+5

    We must find the marginal revenue when x=15.
    (Marginal revenue = dRdx)

    Solution

    Differentiate:

    dRdx=6x+36

    Now substitute x=15:

    MR=6(15)+36
    MR=90+36=126

    Final Answer

    126

    Correct Option

    (D) 126

     

     

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT (11-22)

    Question 11.

    y=x(x23)+(x3)x2,x>3

    Formula Used

    To differentiate au(x), where base is a(x) or exponent is a function:

    When both base and exponent are functions of x:

    ddx(f(x)g(x))=f(x)g(x)[g(x)lnf(x)+g(x)f(x)f(x)]

    We use logarithmic differentiation.

    Solution

    Term 1: xx23

    Let u=x, v=x23

    ddx(xx23)=xx23[(2x)lnx+x23x]Term 2: (x3)x2

    Let u=x3, v=x2

    ddx((x3)x2)=(x3)x2[(2x)ln(x3)+x2x3]

    Final Answer

    dydx=xx23(2xlnx+x23x)+(x3)x2(2xln(x3)+x2x3)


    Question 12

    Find dydx, ify =12(1cost),x=10(tsint),π2<t<π2

    Solution:

    For parametric equations:dydx=dydtdxdt

    Step 1: Differentiate y w.r.t. t

    y=12(1cost)

    dydt=12(0+sint)=12sint

    Step 2: Differentiate x w.r.t. t

    x=10(tsint)

    dxdt=10(1cost)=10(1cost)

    Step 3: Substitute in formula

    dydx=12sint10(1cost)

    We have:dydx=6sint5(1cost)

    Use trigonometric identities

    1cost=2sin2t2
    sint=2sint2cost2

    Substitute these in:dydx=6(2sint2cost2)52sin2t2

    Cancel 2 from numerator and denominator:

    dydx=6(sint2cost2)5sin2t2

    Simplify:

    dydx=65cost2sint2

    Final Answer

    dydx=65cott2


    Question 13

    Find dydx, if

    y=sin1x+sin11x2,0<x<1

    Solution

    Differentiate term by term.

    Term 1: sin1x

    ddx(sin1x)=11x2

    Term 2: sin11x2

    Let u=1x2=(1x2)1/2

    dudx=12(1x2)1/2(2x)=x1x2

    Now,

    ddx(sin1u)=11u2dudx

    But,

    u2=(1x2)1u2=1(1x2)=x2

    So,

    ddx(sin11x2)=1x2x1x2

    For 0<x<1, x2=x

    ddx(sin11x2)=xx1x2=11x2

    Combine both derivatives

    dydx=11x211x2=0

    Final Answer

    dydx=0


    Question 14

    If

    x1+y+y1+x=0,  1<x<1

    prove thatdydx=1(1+x)2

    Solution

    Differentiate both sides w.r.t. x:

    ddx(x1+y)+ddx(y1+x)=0

    Use product rule for each term

    First term:

    1+y+x121+ydydx

    Second term:

    dydx1+x+y121+x

    Put them together:

    1+y+x21+ydydx+1+xdydx+y21+x=0

    Now group dydx terms:

    dydx(x21+y+1+x)=1+yy21+x

    Use original equation to simplify

    Given:

    x1+y+y1+x=0
    y1+x=x1+y

    Divide both sides by 21+x:

    y21+x=x1+y2(1+x)

    Substitute this into RHS:

    1+y+x1+y2(1+x)=1+y(1x2(1+x))
    =1+y2+x2(1+x)

    Simplify LHS expression

    x21+y+1+x=x+2(1+x)(1+y)21+y

    But from original equation,

    (1+x)(1+y)=x1+yy

    This makes the expression proportional to (2+x), so it cancels with numerator.

    So:dydx=12+x2(1+x)2+x2(1+x)Final Answer

    dydx=1(1+x)2


    Question 15

    For the curve

    (xa)2+(yb)2=c2,c>0

    prove that

    [1+(dydx)2]3/2d2ydx2

    is a constant independent of a and b.

    Solution

    The given equation represents a circle with center (a,b) and radius c.

    (xa)2+(yb)2=c2

    Differentiate w.r.t. x:

    First derivative

    2(xa)+2(yb)dydx=0

    (xa)+(yb)dydx=0

    dydx=xayb

    Second derivative

    Differentiate again w.r.t. x using quotient rule:

    ddx(dydx)=(yb)(xa)dydx(yb)2

    Substitute dydx=xayb:

    d2ydx2=(yb)+(xa)2yb(yb)2

    Take LCM in numerator:

    d2ydx2=(yb)2+(xa)2(yb)3

    But from the original equation:

    (xa)2+(yb)2=c2

    So:d2ydx2=c2(yb)3

    Compute 1+(dydx)2

    1+(dydx)2=1+(xayb)2=(yb)2+(xa)2(yb)2=c2(yb)2

    Raise to power 3/2:

    [1+(dydx)2]3/2=(c2(yb)2)3/2=c3yb3

    Now evaluate the required expression

    [1+(dydx)2]3/2d2ydx2=c3yb3c2(yb)3=c3c21=c

    Final Proven Result

    [1+(dydx)2]3/2d2ydx2=c

    Conclusion

    • The expression is a constant.

    • It is independent of a and b (center of the circle).

    • The constant equals the radius c (up to sign).


    Question 16

    If

    cosy=xcos(a+y),cosa±1

    prove that

    dydx=cos2(a+y)sina

    Solution

    Given:

    cosy=xcos(a+y)Differentiate both sides with respect to x:

    LHS

    ddx(cosy)=sinydydx

    RHS

    ddx(xcos(a+y))=1cos(a+y)+xddx(cos(a+y))

    Now,

    ddx[cos(a+y)]=sin(a+y)dydx

    So RHS becomes:

    cos(a+y)xsin(a+y)dydx

    Now equate derivatives

    sinydydx=cos(a+y)xsin(a+y)dydx

    Group dydx terms:

    xsin(a+y)dydx+sinydydx=cos(a+y)

    dydx(sinyxsin(a+y))=cos(a+y)

    Use original equation for substitution

    Original:

    cosy=xcos(a+y)

    So:x=cosycos(a+y)

    Substitute in the factor:

    sinyxsin(a+y)=sinycosycos(a+y)sin(a+y)

    =sinycos(a+y)cosysin(a+y)cos(a+y)Use identity:

    sinycos(a+y)cosysin(a+y)=sin(y(a+y))=sin(a)=sina

    So:sinyxsin(a+y)=sinacos(a+y)

    Final step

    dydx=cos(a+y)sina/cos(a+y)=cos2(a+y)sina


    Question 17

    If

    x=a(cost+tsint),y=a(sinttcost)

    findd2ydx2

    Solution

    Step 1: First derivatives w.r.t. t

    x=a(cost+tsint)

    dxdt=a(sint+sint+tcost)=atcost

    y=a(sinttcost)

    dydt=a(cost(costtsint))=atsint

    Step 2: First derivative dydx

    dydx=dydtdxdt=atsintatcost=tant(t0)

    Step 3: Second derivative d2ydx2

    Formula:

    d2ydx2=ddt(dydx)dxdt

    ddt(tant)=sec2t
    dxdt=atcost

    So:d2ydx2=sec2tatcost

    Final Answer

    d2ydx2=sec3tator equivalently:

    d2ydx2=1atcos3t

    since sec2t=1cos2t


    Question 18

    If

    f(x)=x3

    show that f(x) exists for all real x and find it.

    Solution

    First, rewrite the function without modulus

    x={x,x0x,x<0

    So:x3={x3,x0(x)3=x3,x<0

    Thusf(x)={x3,x0x3,x<0

    First derivative

    f(x)={3x2,x>03x2,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0x3x=limx0x2=0So:f(x)={3x2,x>00,x=03x2,x<0

    Second derivative

    f(x)={6x,x>06x,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0f(x)x

    Right-hand limit:

    limx0+3x2x=lim3x=0

    Left-hand limit:limx03x2x=lim3x=0

    Both limits exist and equal → 0.

    So f(0)=0


    Question 19

    Using the fact that

    sin(A+B)=sinAcosB+cosAsinB

    and differentiation, obtain the sum formula for cosines.

    Solution

    Differentiate both sides with respect to B:

    Given identity:

    sin(A+B)=sinAcosB+cosAsinB

    Differentiate LHS

    ddB[sin(A+B)]=cos(A+B)

    Differentiate RHS

    • sinA is constant w.r.t B

    • cosB differentiates to sinB

    • cosA is constant w.r.t B

    • sinB differentiates to cosB

    So:

    ddB[sinAcosB+cosAsinB]=sinA(sinB)+cosA(cosB)
    =cosAcosBsinAsinB

    Equate derivatives of both sides

    cos(A+B)=cosAcosBsinAsinB

    Final Answer

    cos(A+B)=cosAcosBsinAsinB


    Question 20

    Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

    Answer

    Yes, such a function does exist.

    Example

    f(x)=x+x1

    Check Continuity

    • Both x and x1 are continuous everywhere.

    • Sum of continuous functions is also continuous.

    f(x) is continuous for all real x.

    Check Differentiability

    A function involving x is not differentiable where the inside part becomes zero.

    For x:

    Not differentiable at x=0

    For x1:

    Not differentiable at x=1

    So f(x) is not differentiable exactly at two points: x=0 and x=1

    Everywhere else, the derivative exists.

    Conclusion

    Yes, such a function exists. One example is f(x)=x+x1


    Question 21

    Ify=f(x)g(x)h(x)lmnabc

    prove that

    dydx=f(x)g(x)h(x)lmnabc

    Simple and Direct Proof

    Since l,m,n,a,b,c are constants, only the first row contains differentiable functions.

    Expand determinant along the first row:

    y=f(x)mnbcg(x)lnac+h(x)lmab

    Let the minors be constants:

    A=mnbc,B=lnac,C=lmab

    So rewrite:

    y=f(x)Ag(x)B+h(x)C

    Differentiate both sides:

    dydx=f(x)Ag(x)B+h(x)C

    Substitute determinants back:

    dydx=f(x)mnbcg(x)lnac+h(x)lmab

    This is exactly:

    dydx=f(x)g(x)h(x)lmnabc


    Question 22

    If

    y=eacos1x,1x1

    show that

    (1x2)d2ydx2xdydxa2y=0

    Solution

    Let

    y=eacos1x

    Let

    u=cos1x

    so that

    y=eau

    Then:

    dudx=11x2

    First derivative

    dydx=eauadudx=ya(11x2)
    dydx=ay1x2

    Second derivative

    Differentiate again w.r.t x:

    d2ydx2=a1x2dydxayddx(1x2)1/2

    Compute derivative of (1x2)1/2:

    ddx(1x2)1/2=12(1x2)3/2(2x)=x(1x2)3/2

    So:

    d2ydx2=a1x2dydxayx(1x2)3/2

    Substitute dydx=ay1x2:

    d2ydx2=a1x2(ay1x2)axy(1x2)3/2
    =a2y1x2axy(1x2)3/2

    Multiply both sides by 1x2

    (1x2)d2ydx2=a2yaxy1x2

    Now substitute again

    dydx=ay1x2

    So:

    (1x2)d2ydx2=a2y+xdydx

    Rearrange:

    (1x2)d2ydx2xdydxa2y=0


     

     

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT(1-10)

    Question 1

    Differentiate w.r.t. x:

    y=(3x29x+5)9

    Solution

    Using the chain rule, differentiate the outer function first and then multiply by the derivative of the inner function:

    dydx=9(3x29x+5)8×ddx(3x29x+5)

    Now differentiate the bracket:

    ddx(3x29x+5)=6x9

    So,dydx=9(3x29x+5)8(6x9)

    dydx=27(2x3)(3x29x+5)8


    Question 2

    Differentiate w.r.t. x:

    y=sin3x+cos6x

    Solution

    Differentiate each term separately. Using the chain rule:

    ddx(sin3x)=3sin2xddx(sinx)=3sin2xcosx
    ddx(cos6x)=6cos5xddx(cosx)=6cos5x(sinx)

    So,dydx=3sin2xcosx6cos5xsinx

    Now factor common terms: 3sinxcosx

    dydx=3sinxcosx(sinx2cos4x)


    Question 3

    Differentiate w.r.t. x:

    y=(5x)3cos2x

    Solution

    Take log on both sides:

    lny=3cos2xln(5x)

    Differentiate w.r.t. x (using product rule):

    1ydydx=3ln(5x)ddx(cos2x)+3cos2xddx(ln(5x))

    =3ln(5x)(2sin2x)+3cos2x1x

    =6ln(5x)sin2x+3cos2xx

    Multiply both sides by y:

    dydx=(5x)3cos2x(3cos2xx6ln(5x)sin2x)


    Question 4

    Differentiate w.r.t. x:

    y=sin1(xx),0x1

    Solution

    First rewrite the function inside:

    xx=x3/2

    y=sin1(x3/2)

    Now differentiate:

    dydx=11(x3/2)2ddx(x3/2)

    ddx(x3/2)=32x1/2

    So,dydx=32x1/21x3

    dydx=3x21x3,0x1


     

    Question 5y=cos1(x2)2x+7,2<x<2Answer :

    To Find: dydx

    Let:y=cos1(x2)(2x+7)1/2

    Use Product Rule:

    dydx=dudxv+udvdx

    Where:u=cos1(x2),v=(2x+7)1/2

    Step 1: Differentiate u=cos1(x/2)

    dudx=11(x2)2ddx(x2)
    dudx=11x2412
    dudx=121x24

    Now,

    1x24=4x22

    So,

    dudx=124x22=14x2

    Step 2: Differentiate v=(2x+7)1/2

    dvdx=12(2x+7)3/22
    dvdx=(2x+7)3/2

    Apply Product Rule

    dydx=(14x2)(2x+7)1/2+(cos1(x2))((2x+7)3/2)
    dydx=14x22x+7cos1(x/2)(2x+7)3/2


    Question 6

    y=cot1(1+sinx+1sinx1+sinx1sinx),0<x<π2

    Solution

    Let

    A=1+sinx,B=1sinx

    So the expression inside cot1 becomes:

    A+BAB

    Simplify the expression

    Multiply numerator and denominator by (A+B):

    A+BABA+BA+B=(A+B)2A2B2Expand numerator:

    (A+B)2=A2+2AB+B2And denominator:

    A2B2=(1+sinx)(1sinx)=2sinx

    Now calculate numerator:

    A2+B2=(1+sinx)+(1sinx)=2
    AB=(1+sinx)(1sinx)=1sin2x=cosx

    So:(A+B)2=2+2cosx

    Thus:A+BAB=2+2cosx2sinx=1+cosxsinx

    Use Trigonometric Identity

    1+cosxsinx=cotx2

    So:y=cot1(cotx2)

    Given domain 0<x<π2, we have:

    0<x2<π4

    In this domain, cot1(cotθ)=θ
    Thus:y=x2

    Differentiate

    dydx=12


    Question 7

    y=(logx)logx,x>1

    We need to find:

    dydxSolution

    Take logarithm on both sides

    y=(logx)logx
    lny=logxln(logx)

    Differentiate both sides w.r.t. x

    Use implicit differentiation:

    Left side:

    1ydydx

    Right side — Product rule:

    ddx[logxln(logx)]

    Let u=logx and v=ln(logx)

    u=1x,v=1logx1x

    Apply product rule:

    ddx[uv]=uv+uv
    =1xln(logx)+logx1xlogx

    =ln(logx)x+1x

    Equate both sides

    1ydydx=ln(logx)x+1x

    Multiply both sides by y:

    dydx=y(ln(logx)x+1x)

    Substitute y=(logx)logx

    dydx=(logx)logx(ln(logx)x+1x)

    Final Answer

    dydx=(logx)logx(ln(logx)x+1x)


    Question 8

    y=cos(acosx+bsinx)

    where a and b are constants.

    We have to find:

    dydxSolution

    Let:

    u=acosx+bsinx

    So the function becomes:

    y=cosu

    Differentiate using Chain Rule

    dydx=sinududx

    Now differentiate u:

    dudx=addx(cosx)+bddx(sinx)

    dudx=a(sinx)+b(cosx)

    dudx=asinx+bcosx

    Substitute back into derivative

    dydx=sin(acosx+bsinx)(asinx+bcosx)

    Final Answer

    dydx=sin(acosx+bsinx)(asinxbcosx)


    Question 9

    y=(sinxcosx)(sinxcosx),π4<x<3π4

    We must find:

    dydx

    Solution

    Let:

    y=(sinxcosx)(sinxcosx)

    Take natural log on both sides (logarithmic differentiation):

    lny=(sinxcosx)ln(sinxcosx)

    Differentiate both sides w.r.t x:

    Left side:

    1ydydx

    Right side (product rule):

    Let u=sinxcosx and v=ln(sinxcosx)

    u=cosx+sinx
    v=1sinxcosx(cosx+sinx)

    Apply product rule:

    ddx[uv]=uv+uv

    =(cosx+sinx)ln(sinxcosx)+(sinxcosx)cosx+sinxsinxcosx

    Simplify the second term:

    =(cosx+sinx)ln(sinxcosx)+(cosx+sinx)

    Factor out (cosx+sinx)

    =(cosx+sinx)[ln(sinxcosx)+1]

    Now equate both sides

    1ydydx=(cosx+sinx)[ln(sinxcosx)+1]

    Multiply both sides by y:

    dydx=y(cosx+sinx)[ln(sinxcosx)+1]

    Substitute y=(sinxcosx)(sinxcosx)

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]

    Final Answer

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]


    Question 10

    y=xx+xa+ax+aa,a>0,  x>0

    We need to find:

    dydx

    Differentiate term by term

    1. xx

    Use logarithmic differentiation:

    ddx(xx)=xx(lnx+1)

           2. xa

    Here a is constant:

    ddx(xa)=axa1

            3. ax

    Exponential with constant base:

    ddx(ax)=axlna

            4. aa

    Constant term:

    ddx(aa)=0

    Combine all results

    dydx=xx(lnx+1)+axa1+axlna+0

    Final Answer

    dydx=xx(lnx+1)+axa1+axlna

     

     

  • Exercise-5.7, Class 12th, Maths, Chapter 5, NCERT


    Find the second order derivatives of the functions given in Exercises 1 to 10.

    Q1. y=x2+3x+2

    Solution

    dydx=2x+3
    d2ydx2=2


    Q2. y=x20

    Solution

    dydx=20x19
    d2ydx2=380x18


    Q3. y=xcosx

    Solution

    Using product rule:

    dydx=cosxxsinx

    Now differentiate again:

    d2ydx2=sinx(sinx+xcosx)
    d2ydx2=2sinxxcosx


    Q4. y=logx

    Solution

    dydx=1x
    d2ydx2=1x2


    Q5. y=x3logx

    Solution

    dydx=3x2logx+x2
    d2ydx2=6xlogx+5x


    Q6. y=exsin5x

    Solution

    dydx=ex(sin5x+5cos5x)
    d2ydx2=ex(24sin5x+10cos5x)


    Q7. y=e6xcos3x

    Solutiondydx=e6x(6cos3x3sin3x)
    d2ydx2=e6x(27cos3x36sin3x)


    Q8. y=tan1x

    Solutiondydx=11+x2
    d2ydx2=2x(1+x2)2


    Q9. y=log(logx)

    Solutiondydx=1xlogx
    d2ydx2=logx+1x2(logx)2


    Q10. y=sin(logx)

    Solutiondydx=cos(logx)x
    d2ydx2=cos(logx)sin(logx)x2


    Q11. If y=5cosx3sinx, show that d2ydx2+y=0

    Solution

    dydx=5sinx3cosx
    d2ydx2=5cosx+3sinx

    Now,d2ydx2+y=(5cosx+3sinx)+(5cosx3sinx)

    d2ydx2+y=0

    Hence proved

  • Exercise-5.6, Class 12th, Maths, Chapter 5, NCERT

    If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx.

    Question 1

    If x and y are connected parametrically by the equations:

    x=2at2,y=at4

    Find dydx without eliminating the parameter.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=ddt(2at2)=4at
    dydt=ddt(at4)=4at3

    Now apply the formula:

    dydx=dydtdxdt
    dydx=4at34at=t2

    Final Answer

    dydx=t2


    Question 2

    Ifx=acosθ,y=bcosθ

    find dydx.

    Solution

    Differentiate w.r.t. θ:

    dxdθ=asinθ
    dydθ=bsinθ

    Apply:

    dydx=dydθdxdθ
    dydx=bsinθasinθ

    dydx=ba

    Final Answer

    dydx=ba


    Question 3

    Ifx=sint,y=cos2t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=cost

    dydt=ddt(cos2t)=2sin2t

    Apply parametric derivative formula:

    dydx=dydtdxdt
    dydx=2sin2tcost

    Now use identity:

    sin2t=2sintcost

    So:dydx=2(2sintcost)cost
    dydx=4sint


    Question 4

    Ifx=4t,y=4t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=4
    dydt=ddt(4t)=4t2

    Now apply:

    dydx=dydtdxdt
    dydx=4t24
    dydx=1t2


    Question 5

    Ifx=cosθcos2θ,y=sinθsin2θ

    find dydx.

    Solution

    Differentiate both equations with respect to θ:

    Differentiate x

    dxdθ=ddθ(cosθ)ddθ(cos2θ)
    =sinθ(sin2θ)(2)
    =sinθ+2sin2θ

    Differentiate y

    dydθ=ddθ(sinθ)ddθ(sin2θ)
    =cosθ(2cos2θ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=cosθ2cos2θsinθ+2sin2θ


    Question 6

    Ifx=a(θsinθ),y=a(1+cosθ)

    find dydx.

    Solution

    Differentiate both x and y with respect to θ:

    Differentiate x

    dxdθ=a(ddθ(θ)ddθ(sinθ))
    =a(1cosθ)

    Differentiate y

    dydθ=addθ(1+cosθ)
    =a(0sinθ)
    =asinθ

    Apply the formula:

    dydx=dydθdxdθ
    dydx=asinθa(1cosθ)
    dydx=sinθ1cosθ

    Use identity:

    1cosθ=2sin2θ2,sinθ=2sinθ2cosθ2
    dydx=2sinθ2cosθ22sin2θ2
    =cosθ2sinθ2
    =cotθ2


    Question 7

    If

    x=sin3tcos2t,y=cos3tcos2t

    Solution 

    Rewrite x and y as:

    x=sin3t(cos2t)1/2,y=cos3t(cos2t)1/2

    Divide y by x:

    yx=cos3tsin3t=cot3t

    Take cube root:

    (yx)1/3=cottLet:

    u=tant=(xy)1/3Differentiate implicitly:

    sec2tdtdx=13(xy)2/3yxdydxy2

    dydx=cot3t


    Question 8

    Ifx=a(cost+logtant2),y=asint

    find dydx.

    Solution 

    Differentiate both x and y with respect to t.

    Differentiate y

    y=asint

    dydt=acost

    Differentiate x

    x=a(cost+logtant2)

    dxdt=a(sint+ddtlogtant2)

    Now recall the identity:

    ddt(logtant2)=1sint

    So:

    dxdt=a(sint+1sint)
    dxdt=a(sin2t+1sint)
    dxdt=a(1sin2tsint)
    dxdt=a(cos2tsint)
    dxdt=acos2tcsct

    Now apply parametric formula

    dydx=dydtdxdtdydx=acostacos2tcsctCancel a:

    dydx=costsintcos2t

    dydx=sintsect

    dydx=tant


    Question 9

    If

    x=asecθ,y=btanθ

    find dydx.

    Solution

    Differentiate both with respect to θ:

    Differentiate x

    dxdθ=asecθtanθ

    Differentiate y

    dydθ=bsec2θ

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=bsec2θasecθtanθ
    dydx=bsecθatanθ
    dydx=basecθtanθUse identity:

    secθtanθ=cscθThus:

    dydx=bacscθ


    Question 10

    If

    x=a(cosθ+θsinθ),y=a(sinθθcosθ)

    find dydx.

    Solution 

    Differentiate x and y with respect to θ.

    Differentiate x

    x=a(cosθ+θsinθ)

    Apply product rule to θsinθ:

    dxdθ=a(sinθ+sinθ+θcosθ)

    dxdθ=a(θcosθ)

    Differentiate y

    y=a(sinθθcosθ)
    dydθ=a(cosθ(cosθθsinθ))

    dydθ=a(θsinθ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=aθsinθaθcosθ

    Cancel aθ:

    dydx=sinθcosθ
    dydx=tanθ


    Question

    Ifx=asin1t,y=acos1t

    show that

    dydx=yx

    Solution 

    First rewrite expressions using exponent rules.

    x=(asin1t)1/2=a12sin1t
    y=(acos1t)1/2=a12cos1t

    Differentiate w.r.t. t using log differentiation:

    Differentiate x

    logx=12(sin1t)loga

    Differentiate:

    1xdxdt=12loga11t2

    dxdt=xloga21t2

    Differentiate y

    logy=12(cos1t)loga

    Differentiate:

    1ydydt=12loga11t2

    dydt=yloga21t2

    Now apply parametric derivative formula

    dydx=dy/dtdx/dt
    dydx=yloga21t2xloga21t2

    Cancel common factors:

    dydx=yx

     

     

     

  • Exercise-5.5, Class 12th, Maths, Chapter 5, NCERT

    Question 1

    Differentiate the following function w.r.t. x:

    y=cosxcos2xcos3x

    Solution

    Given:

    y=cosxcos2xcos3x

    This is a product of three functions.
    Use product rule:

    (uvw)=uvw+uvw+uvw

    Let:

    u=cosx,v=cos2x,w=cos3x

    Then:

    u=sinx,v=2sin2x,w=3sin3x

    Applying product rule:

    y=uvw+uvw+uvw
    y=(sinx)(cos2x)(cos3x)+(cosx)(2sin2x)(cos3x)

    +(cosx)(cos2x)(3sin3x)
    y=sinxcos2xcos3x2cosxsin2xcos3x3cosxcos2xsin3x


    Question 2

    Differentiate the following w.r.t. x:

    y=(x1)(x2)(x3)(x4)(x5)

    Solution 

    Rewrite using exponent form:

    y=((x1)(x2)(x3)(x4)(x5))1/2

    Taking log on both sides (log differentiation method):

    logy=12[log(x1)+log(x2)log(x3)log(x4)log(x5)]

    Differentiate w.r.t. x:

    1ydydx=12[1x1+1x21x31x41x5]

    Multiply both sides by y:

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]

    Final Answer 

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]


     

    Question 3

    Differentiate w.r.t. x:

    y=(logx)cosx

    Solution :

    Take natural logarithm on both sides:

    logy=cosxlog(logx)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side (product rule):

    ddx(cosxlog(logx))=sinxlog(logx)+cosx1logx1x

    So:

    1ydydx=sinxlog(logx)+cosxxlogx

    Multiply both sides by y:

    dydx=y[sinxlog(logx)+cosxxlogx]

    Substitute y=(logx)cosx:

    dydx=(logx)cosx[cosxxlogxsinxlog(logx)]


    Question 4

    Differentiate w.r.t. x:

    y=xx2sinx

    Solution :

    The second term is simple to differentiate.
    The first term xx requires logarithmic differentiation.

    Let:

    u=xx

    Taking log on both sides:

    logu=xlogx

    Differentiate w.r.t. x:

    Left side:1ududx

    Right side (product rule):

    ddx(xlogx)=1logx+x1x=logx+1

    So:

    1ududx=logx+1
    dudx=xx(logx+1)

    Now differentiate the whole expression:

    Given:y=xx2sinx

    dydx=xx(logx+1)2cosx


    Question 5

    Differentiate w.r.t. x:

    y=(x+3)2(x+4)3(x+5)4

    Solution

    Taking logarithm on both sides:

    logy=2log(x+3)+3log(x+4)+4log(x+5)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side:

    21x+3+31x+4+41x+5

    So:1ydydx=2x+3+3x+4+4x+5

    Multiply both sides by y:

    dydx=(x+3)2(x+4)3(x+5)4(2x+3+3x+4+4x+5)


    Question 6

    Differentiate w.r.t. x:

    y=(1+1x)(1+1x2)(1+1x3)

    Solution 

    Take logarithm on both sides:

    logy=log(1+1x)+log(1+1x2)+log(1+1x3)

    Differentiate both sides w.r.t. x:

    Left side:1ydydx

    Right side (chain rule):

    ddxlog(1+1x)=11+1x(1x2)=1x(x+1)

    Similarly:

    ddxlog(1+1x2)=11+1x2(2x3)=2x2(x2+1)

    ddxlog(1+1x3)=11+1x3(3x4)=3x3(x3+1)

    So:

    1ydydx=1x(x+1)2x2(x2+1)3x3(x3+1)

    Multiply both sides by y:

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]

    Final Answer

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]


    Question 7

    Differentiate w.r.t. x:

    y=(logx)x+xlogx

    Solution :

    Since the expression is the sum of two terms, differentiate them separately.

    Part 1: Differentiate u=(logx)x

    Take logarithm on both sides:

    logu=xlog(logx)

    Differentiate:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(logx)]=log(logx)+x1logx1x=log(logx)+1logx

    So:

    dudx=(logx)x[log(logx)+1logx]

    Part 2: Differentiate v=xlogx

    Let:v=xlogx

    Take logarithm:

    logv=logxlogx=(logx)2

    Differentiate:

    Left side:1vdvdx

    Right side:

    2logx1x=2logx

    Thus:

    dvdx=xlogx2logxx

    Combine (since y=u+v)

    dydx=(logx)x[log(logx)+1logx]+xlogx2logxx


    Question 8

    Differentiate w.r.t. x:

    y=(sinx)x+sin1x

    Solution

    Part 1: Differentiate (sinx)x

    Let

    u=(sinx)x

    Take logarithm:

    logu=xlog(sinx)

    Differentiate both sides:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(sinx)]=log(sinx)+x1sinxcosx

    =log(sinx)+xcotx

    So:dudx=(sinx)x[log(sinx)+xcotx]

    Part 2: Differentiate sin1x

    ddx(sin1x)=11x2

    Final Derivative

    dydx=(sinx)x[log(sinx)+xcotx]+11x2


    Question 9

    Differentiate w.r.t. x:

    y=xsinx+(sinx)cosx

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xsinx,v=(sinx)cosx

    Part 1: Differentiate u=xsinx

    Take log on both sides:

    logu=sinxlogx

    Differentiate:

    1ududx=cosxlogx+sinx1x

    So:

    dudx=xsinx(cosxlogx+sinxx)

    Part 2: Differentiate v=(sinx)cosx

    Take log:

    logv=cosxlog(sinx)

    Differentiate (product rule):

    1vdvdx=sinxlog(sinx)+cosxcosxsinx
    =sinxlog(sinx)+cosxcotx

    So:dvdx=(sinx)cosx[cosxcotxsinxlog(sinx)]

    Final Derivative

    dydx=xsinx(cosxlogx+sinxx)+(sinx)cosx[cosxcotxsinxlog(sinx)]


    Question 10

    Differentiate w.r.t. x:

    y=xxcosx+x2+1x21

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xxcosx,v=x2+1x21

    Part 1: Differentiate u=xxcosx

    Take log both sides:

    logu=xcosxlogx

    Differentiate:

    Left side:

    1ududx

    Right side (product rule):

    ddx[xcosxlogx]=cosxlogx+x(sinx)logx+xcosx1x

    =cosxlogxxsinxlogx+cosx

    =cosx(logx+1)xsinxlogx

    So:

    dudx=xxcosx[cosx(logx+1)xsinxlogx]

    Part 2: Differentiate v=x2+1x21

    Use quotient rule:

    v=(x21)(2x)(x2+1)(2x)(x21)2

    =2x(x21x21)(x21)2

    =2x(2)(x21)2

    =4x(x21)2

    Final Derivative

    dydx=xxcosx[cosx(logx+1)xsinxlogx]+4x(x21)2


    Question 11 

    Differentiate w.r.t. x:

    y=(xcosx)x+(xsinx)1/x

    Solution

    Part 1: Let

    u=(xcosx)x

    Taking log:

    logu=xlog(xcosx)

    Differentiate:

    1ududx=log(xcosx)+x1xcosx(cosxxsinx)

    =log(xcosx)+cosxxsinxxcosx

    =log(xcosx)+1xtanx

    Thus:

    dudx=(xcosx)x[log(xcosx)+1xtanx]

    Part 2: Let

    v=(xsinx)1/x

    Taking log:

    logv=1xlog(xsinx)

    Differentiate:

    1vdvdx=1x2log(xsinx)+1xsinx+xcosxxsinx
    =log(xsinx)x2+sinx+xcosxx2sinx

    =log(xsinx)x2+1x2+cosxxsinx

    Thus:

    dvdx=(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]

    Answer

    dydx=(xcosx)x[log(xcosx)+1xtanx]+(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]


    Question 12

    Differentiate with respect to x:

    xy+yx=1

    This is an implicit function (y also depends on x), so we will use implicit differentiation + logarithmic differentiation.

    Solution :

    Differentiate both sides w.r.t. 

    x:

    Step 1: Differentiate xy

    Write:

    xy=eylogx

    Differentiate:

    ddx(xy)=xyddx(ylogx)

    =xy(logxdydx+yx)

    Step 2: Differentiate yx

    Write:

    yx=exlogy

    Differentiate:

    ddx(yx)=yxddx(xlogy)
    =yx(logy+x1ydydx)

    =yx(logy+xydydx)

    Step 3: Differentiate RHS

    ddx(1)=0

    Step 4: Combine all terms

    xy(logxdydx+yx)+yx(logy+xydydx)=0

    Now collect dydx terms together:

    xylogxdydx+yxxydydx=xyyxyxlogy

    Factor out dydx:

    dydx(xylogx+yxxy)=(yxyx+yxlogy)

    Final Answer

    dydx=(yxyx+yxlogy)xylogx+xyyx

    Or more neatly:

    dydx=(yxxy+yxlogy)xylogx+xyyx


    Question 13

    Differentiate w.r.t. x:

    yx=xy

    This is an implicit relation involving both x and y, so we will use logarithmic implicit differentiation.

    Solution 

    Given:

    yx=xy

    Take natural log on both sides:

    log(yx)=log(xy)

    Apply log rule: log(ab)=bloga

    xlogy=ylogx

    Differentiate both sides w.r.t. x

    Left side:

    ddx(xlogy)=1logy+x1ydydx

    Right side:

    ddx(ylogx)=dydxlogx+y1x

    Arrange terms

    logy+xydydx=logxdydx+yx

    Bring all dydx terms to one side:

    xydydxlogxdydx=yxlogy

    Factor out dydx:

    dydx(xylogx)=yxlogy

    Final Answer

    dydx=yxlogyxylogx


    QUESTION 14

    Differentiate with respect to x:

    (cosx)y=(cosy)x

    Solution:

    Take logarithm on both sides:

    log((cosx)y)=log((cosy)x)

    Using the rule log(ab)=bloga:

    ylog(cosx)=xlog(cosy)

    Differentiate both sides w.r.t. x:

    Left side:

    ddx[ylog(cosx)]=dydxlog(cosx)+y1cosx(sinx)

    =dydxlog(cosx)ytanx

    Right side:

    ddx[xlog(cosy)]=1log(cosy)+x1cosy(siny)dydx

    =log(cosy)xtanydydx

    Rearranging terms:

    dydxlog(cosx)(xtanydydx)=log(cosy)+ytanx

    dydx(log(cosx)+xtany)=log(cosy)+ytanx

    dydx=log(cosy)+ytanxlog(cosx)+xtany


    QUESTION 15

    Differentiate w.r.t. x:

    xy=exy

    This is an implicit function, so we differentiate both sides w.r.t. x.

    Solution :

    Differentiate both sides:

    Left side

    ddx(xy)=xdydx+y

    (using product rule)

    Right side

    ddx(exy)=exyddx(xy)=exy(1dydx)

    Form the equation

    xdydx+y=exy(1dydx)

    Expand RHS:

    xdydx+y=exyexydydx

    Bring dydx terms together:

    xdydx+exydydx=exyy

    Factor out dydx:

    dydx(x+exy)=exyy

    dydx=exyyx+exy

    Since from the given equation:

    xy=exy

    Replace exy in the derivative:

    dydx=xyyx+xy

    Factor numerator and denominator:

    =y(x1)x(1+y)


    QUESTION 16

    Find the derivative of the function

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)

    and hence find f(1).

    SOLUTION 

    Take logarithm on both sides

    logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)

    Differentiate w.r.t. x:

    f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8

    Multiply both sides by f(x):

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Final derivative 

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Now find f(1)

    Substitute x=1:

    First compute f(1):

    f(1)=(1+1)(1+12)(1+14)(1+18)=2222=16

    Now compute the bracket part:

    11+1+211+1+4131+1+8171+1
    =12+22+42+82

    =12+1+2+4=12+7=152

    Therefore:

    f(1)=f(1)152

    f(1)=16152=815=120

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]
    f(1)=120


    QUESTION 17

    Differentiate the function:

    y=(x25x+8)(x3+7x+9)by:

    (i) Product rule

    (ii) Expanding the product

    (iii) Logarithmic differentiation

    and check that all answers are the same.

    (i) DIFFERENTIATION BY PRODUCT RULE

    Let:

    u=x25x+8,v=x3+7x+9

    u=2x5,v=3x2+7

    Using product rule:

    y=uv+uv

    y=(2x5)(x3+7x+9)+(x25x+8)(3x2+7)


    (ii) DIFFERENTIATION BY EXPANDING FIRST

    Expand:y=(x25x+8)(x3+7x+9)

    Multiply:

    =x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)

    =x5+7x3+9x25x435x245x+8x3+56x+72

    Combine like terms:

    y=x55x4+15x326x2+11x+72

    Differentiate term-wise:

    y=5x420x3+45x252x+11


    (iii) BY LOGARITHMIC DIFFERENTIATION

    y=(x25x+8)(x3+7x+9)

    Take log:

    logy=log(x25x+8)+log(x3+7x+9)

    Differentiate:

    yy=2x5x25x+8+3x2+7x3+7x+9

    Multiply by y:

    y=(x25x+8)(x3+7x+9)[2x5x25x+8+3x2+7x3+7x+9]

    Simplify (cancel terms):

    y=(2x5)(x3+7x+9)+(3x2+7)(x25x+8)


    QUESTION 18

    If u,v,w are functions of x, prove that:

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (i) By repeated application of the product rule

    Let:

    y=uvw

    First consider:

    y=(uv)w

    Differentiate using product rule:

    dydx=d(uv)dxw+(uv)dwdx

    Now apply product rule again to d(uv)dx:

    d(uv)dx=dudxv+udvdx

    Substitute back:

    dydx=(dudxv+udvdx)w+uvdwdx

    Distribute w:

    dydx=dudxvw+udvdxw+uvdwdx

    Result (Method 1 final statement)

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (ii) By logarithmic differentiation

    Given:

    y=uvw

    Take logarithm on both sides:

    logy=logu+logv+logw

    Differentiate:

    1ydydx=1ududx+1vdvdx+1wdwdx

    Multiply both sides by y=uvw:

    dydx=uvw(1ududx+1vdvdx+1wdwdx)

    Distribute:

    dydx=vwdudx+uwdvdx+uvdwdx

    Final Answer

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    This verifies the required identity by both methods.

    Conclusion

    Yes, both methods give the same derivative result:

    ddx(uvw)=uvw+uvw+uvw

     

     

     

     

     

  • Exercise-5.4, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the following w.r.t. x:

    Question 1

    Differentiate:

    y=exsinxSolution

    This is a quotient, so use the Quotient Rule:

    ddx(uv)=vuuvv2

    Let:

    u=ex,v=sinx

    Then:

    u=ex,v=cosx

    Apply the rule:

    dydx=sinxexexcosx(sinx)2

    Factor out ex:

    dydx=ex(sinxcosx)sin2xFinal Answer

    dydx=ex(sinxcosx)sin2x


    Question 2

    Differentiate w.r.t. x:

    y=esin1xSolution

    Let:

    y=esin1x

    Use the chain rule:

    dydx=esin1xddx(sin1x)

    We know:

    ddx(sin1x)=11x2

    Therefore:

    dydx=esin1x11x2Final Answer

    dydx=esin1x1x2


    Question 3

    Differentiate:

    y=ex3Solution

    Use the chain rule:

    Let:

    y=eu,u=x3

    Then:

    dydu=eu,dudx=3x2

    Apply chain rule:

    dydx=eu3x2

    Substitute u=x3:

    dydx=3x2ex3Final Answer

    dydx=3x2ex3


    Question 4

    Differentiate with respect to x:

    y=sin(tan1(ex))Solution

    Let:

    u=tan1(ex)

    So:

    y=sin(u)

    Step 1: Differentiate outer function

    dydu=cosu

    Step 2: Differentiate inner function

    u=tan1(ex)

    Derivative of tan1t is 11+t2t

    So,

    dudx=11+(ex)2ddx(ex)

    dudx=11+e2x(ex)

    Step 3: Apply chain rule

    dydx=cos(u)dudx

    dydx=cos(tan1(ex))(ex1+e2x)

    We know the identity:

    cos(tan1t)=11+t2

    So:

    cos(tan1(ex))=11+e2x

    Final Simplified Answer

    dydx=ex(1+e2x)3/2Final Answer

    dydx=ex(1+e2x)3/2


    Question 5

    Differentiate w.r.t. x:

    y=log(cos(ex))Solution

    Use the chain rule multiple times.

    Let:

    y=log(cos(ex))

    Step 1: Differentiate outer logarithm

    dydx=1cos(ex)ddx(cos(ex))

    Step 2: Differentiate cos(ex)

    ddx(cos(ex))=sin(ex)ddx(ex)
    =sin(ex)ex

    Combine the results

    dydx=1cos(ex)(exsin(ex))
    dydx=exsin(ex)cos(ex)Final Answer

    dydx=extan(ex)


    Question 6

    Differentiate w.r.t. x:

    y=ex+ex2+ex3+ex4+ex5

    Solution

    Differentiate term-by-term:

        1. ddx(ex)=ex

       2. ddx(ex2)=ex2ddx(x2)=ex22x

       3. ddx(ex3)=ex3ddx(x3)=ex33x2

       4. ddx(ex4)=ex4ddx(x4)=ex44x3

       5. ddx(ex5)=ex5ddx(x5)=ex55x4

    Final Answer

    dydx=ex+2xex2+3x2ex3+4x3ex4+5x4ex5


    Question 7

    Differentiate w.r.t. x:

    y=ex,x>0Solution

    Rewrite the function:

    y=(ex)1/2=e12x

    Let:u=12x=12x1/2

    So:

    y=eu

    Differentiate

    dydu=eu
    dudx=1212x1/2=14x

    Apply chain rule:

    dydx=eududx

    dydx=e12x14xFinal Answer

    dydx=e12x4x,x>0


    Question 8

    Differentiate w.r.t. x:

    y=log(logx),x>1Solution

    This is a composition of two logarithmic functions, so apply the chain rule.

    Let:

    u=logx
    y=logu

    Differentiate step-by-step

    dydu=1u
    dudx=1x

    Apply chain rule

    dydx=dydududx
    dydx=1logx1xFinal Answer

    dydx=1xlogx,x>1


    Question 9

    Differentiate w.r.t. x:

    y=cosxlogx,x>0Solution

    This is a quotient, so apply the Quotient Rule:

    ddx(uv)=vuuvv2Let:

    u=cosx,v=logxThen:

    u=sinx

    v=1x

    Apply quotient rule

    dydx=(logx)(sinx)(cosx)(1x)(logx)2
    dydx=sinxlogxcosxx(logx)2Final Answer

    dydx=sinxlogxcosxx(logx)2,x>0


    Question 10

    Differentiate w.r.t. x:

    y=cos(logx+ex),x>0Solution

    Use the chain rule.

    Let:

    u=logx+exSo:

    y=cos(u)

    Differentiate outer function

    dydu=sin(u)

    Differentiate inner function

    dudx=ddx(logx)+ddx(ex)=1x+ex

    Apply chain rule

    dydx=sin(u)(1x+ex)

    Substitute back u=logx+ex:

    Final Answer

    dydx=sin(logx+ex)(1x+ex),x>0