Exercise-8.2, Class 10th, Maths, Chapter 8, NCERT

Q1. Evaluate the following

(i) sin60cos30+sin30cos60

Solution
Use the sine addition formula: sin(x+y)=sinxcosy+cosxsiny
So the expression = sin(60+30)=sin90=1.

Answer: 1.


(ii) 2tan245+cos230sin260

Compute step by step (digit-by-digit):

  • tan45=1tan245=12=1.So 2tan245=21=2.

  • cos30=32cos230=(32)2=34

  • sin60=32sin260=(32)2=34

Thus cos230sin260=3434=0

So whole expression =2+0=2

Answer: 2.


(iii) cos45sec30+cosec30

Compute values:

  • cos45=22

  • sec30=1cos30=13/2=23

  • cosec30=1sin30=11/2=2

Denominator =23+2=2+233=2(1+3)3.

So

cos45sec30+cosec30=2/22(1+3)/3=2431+3=64(1+3).

Rationalize (multiply numerator & denominator by 31):

64(1+3)3131=6(31)4(31)=6(31)8.

Answer: 6(31)8 (equivalently 64(1+3)


(iv) sin30+tan45cosec60sec30+cos60+cot45

Compute each value:

  • sin30=12

  • tan45=1

  • cosec60=1sin60=13/2=23

So numerator N=12+123=3223

Denominator:

  • sec30=23

  • cos60=12

  • cot45=1

So denominator D=23+12+1=32+23.

Thus

ND=322332+23.

Multiply numerator and denominator by 23 to clear fractions:

ND=33433+4.

(You can leave it in that exact form or approximate: 0.13006.)

Answer: 33433+4


(v) 5cos260+4sec230tan245sin230+cos230

(That is the expression as printed in the PDF.)

Compute step-by-step:

  • cos60=12cos260=145cos260=514=54.

  • sec30=23sec230=434sec230=443=163.

  • tan45=1tan245=1

So numerator =54+1631. Put over common denominator 12:

1512+64121212=15+641212=6712.

Denominator:
sin230=(12)2=14,cos230=(32)2=34
So denominator =14+34=1

Hence whole value =6712

Answer: 6712


Q2. Choose the correct option and justify your choice

(Recall: tan30=13, tan45=1)

(i) 2tan2301+tan230=?

Compute: tan230=13
Numerator =213=23
Denominator =1+13=43.
Quotient =2/34/3=24=12.

12 equals cos60 and also equals sin30 (Both are 1/2.)
So both options (B) and (D) numerically match; the usual textbook answer gives (B) cos60(but note it is also equal to sin30).

Answer: (B) cos60 (value =12; also equals sin30).


(ii) 1tan2451+tan245=?

tan45=1tan245=1. So numerator =11=0 Denominator =1+1=2. Quotient =0.

Answer: (D) 0.


(iii)sin2A=2sin” — for which  A among choices 0,30,45,60

Use identity sin2A=2sinAcosA. Hence we need
2sinAcosA=2sinA. Subtract 2sinA: 2sinA(cosA1)=0. So either sinA=0 or cosA=1. Both give A=0 (in the given choice list).

Answer: (A) 0.


(iv) 2tan2301tan230=?

Compute: tan230=13. Numerator =213=23 Denominator =113=23 Quotient =1

Which option equals 1? Among the listed options in the book, none of cos60, sin60, tan60, sin30 equals 1. So the numeric value is 1 — if forced to choose from those printed options the closest intended match in many sources is (A) cos60 is incorrect; the correct result is 1 (so none of the four multiple-choice labels equals 1). (If the printed MCQ had different labels, pick the one equal to 1.)


Q3. If tan(A+B)=3 and tan(AB)=13; 0<A+B90; A>B. Find A and B.

Let x=A+B, y=AB Then tanx=3x=60 (since 0<x90).
tany=13y=30 (acute value).

Now

A=x+y2=60+302=45,B=xy2=60302=15.

Answer: A=45, B=15.


Q4. State whether the following are true or false. Justify.

(i) sin(A+B)=sinA+sinB  — False.
Counterexample: let A=B=30.

LHS= sin60=320.8660.

RHS= sin30+sin30=12+12=1 Not equal.

(ii) The value of sinθ increases as θ increases. — True (for 0θ90. On [0,90] sine is strictly increasing (you can see ddθsinθ=cosθ>0 there, or check values from the standard table).

(iii) The value of cosθ increases as θ increases. — False (for 0θ90, cosθ decreases from 1to 0).

(iv) sinθ=cosθ for all θ. — False. They are equal only at specific angles (e.g. θ=45 in [0,90], not for all θ.

(v) cotA is not defined for A=0. — True. cotA=cosAsinA and sin0=0 so cotangent is undefined at 0

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.