Exercise-7.2, Class 10th, Maths, Chapter 7, NCERT

1. Find the coordinates of the point which divides the join of (βˆ’1, 7) and (4, βˆ’3) in the ratio 2 : 3.
Using section formula (ratio 2:3):

(2β‹…4+3β‹…(βˆ’1)2+3,β€…β€Š2β‹…(βˆ’3)+3β‹…72+3)=(8βˆ’35,β€…β€Šβˆ’6+215)=(1,3).

Answer: (1,3)


2. Find the coordinates of the points of trisection of the line segment joining (4, βˆ’1) and (βˆ’2, βˆ’3).
Points of trisection divide the segment into three equal parts, so use ratios 1:2Β and 2:1

For ratio 1:2

(1β‹…(βˆ’2)+2β‹…43,β€…β€Š1β‹…(βˆ’3)+2β‹…(βˆ’1)3)=(βˆ’2+83,β€…β€Šβˆ’3βˆ’23)=(2,β€‰βˆ’5/3).

For ratio 2:1

(2β‹…(βˆ’2)+1β‹…43,β€…β€Š2β‹…(βˆ’3)+1β‹…(βˆ’1)3)=(βˆ’4+43,β€…β€Šβˆ’6βˆ’13)=(0,β€‰βˆ’7/3).

Answer: Points are (2,β€‰βˆ’5/3)Β and (0,β€‰βˆ’7/3)Β 


3. Text summary: rectangular school ground ABCD has parallel chalk lines spaced 1 m apart; 100 flower pots are placed 1 m apart along AD. Niharika runs 14 of AD on the 2nd line and posts a green flag. Preet runs 15Β of AD on the 8th line and posts a red flag. Find the distance between the two flags. If Rashmi must post a blue flag halfway along the segment joining the two flags, where should she post it?

  • The 100 pots, 1 m apart, are placed along AD; thus the distance from the first pot to the last pot = 99Β m. I assume this means AD=99Β m.

  • Chalk lines are parallel to AD and are 1 m apart; the β€œ2nd line” is 1 m from the 1st line, the β€œ8th line” is 7 m from the 1st line, so the perpendicular (line-to-line) distance between the 2nd and 8th lines is 7βˆ’1=6Β m.

  • Distances along each line are measured from the same end (say point A).

With these assumptions:

  • Niharika’s horizontal position (along AD) = 14β‹…AD=14β‹…99=24.75Β from A (on the 2nd line, i.e. at perpendicular distance =1Β from reference line).

  • Preet’s horizontal position = 15β‹…AD=15β‹…99=19.8Β m from A (on the 8th line, perpendicular distance = 7 m from reference line).

  • Horizontal difference =24.75βˆ’19.8=4.95Β m. Vertical (perpendicular) difference =7βˆ’1=6 m.

Distance between flags:

(4.95)2+62=24.5025+36=60.5025β‰ˆ7.774Β m.

Midpoint (where Rashmi should post the blue flag) β€” average coordinates (along AD, perp):
Horizontal: 24.75+19.82=22.275 m from A. Perpendicular: 1+72=4 m from reference line, i.e. on the 5th line (since lines are integer metre spacing, the 5th line is 4 m away).


4. Find the ratio in which the line segment joining the points (βˆ’3, 10) and (6, βˆ’8) is divided by (βˆ’1, 6).
Let the ratio be m:1Β (using the book’s section formula convention). Then coordinates:

(mβ‹…6+1β‹…(βˆ’3)m+1,β€…β€Šmβ‹…(βˆ’8)+1β‹…10m+1)=(βˆ’1,6)

From the x-coordinate:

6mβˆ’3m+1=βˆ’1β‡’6mβˆ’3=βˆ’mβˆ’1β‡’7m=2β‡’m=27.

So the ratio m:1=27:1Β β†’ multiply by 7 β†’ 2:7Β (You can check the y-coordinate gives 6 too.)

Answer: the point divides the segment internally in the ratio 2:7


5. Find the ratio in which the line segment joining A(1, βˆ’5) and B(βˆ’4, 5) is divided by the x-axis. Also find the coordinates of the point of division.
Let ratio be m:1Β (A to B). A point on x-axis has y = 0. Using y-coordinate:

mβ‹…5+1β‹…(βˆ’5)m+1=0β‡’5mβˆ’5=0β‡’m=1.

So ratio 1:1 (mid-point). Mid-point coordinates:

(1+(βˆ’4)2,βˆ’5+52)=(βˆ’32,0).

Answer: ratio 1:1 (midpoint); point is (βˆ’32, 0)


6. If (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, find x and y.
Midpoint of diagonal joining first and third vertices equals midpoint of diagonal joining second and fourth. So midpoint of (1,2) and (x,6)Β is (1+x2,4). Midpoint of (4,y)Β and (3,5) is (72,y+52). Equate:

1+x2=72β‡’1+x=7β‡’x=6.
4=y+52β‡’y+5=8β‡’y=3.

Answer: x=6,β€…β€Šy=3


7. Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, βˆ’3) and B is (1, 4).
Centre = midpoint of diameter AB. Let A = (x,y). Then

x+12=2β‡’x+1=4β‡’x=3,
y+42=βˆ’3β‡’y+4=βˆ’6β‡’y=βˆ’10.

Answer: A=(3,βˆ’10)Β 


8. If A and B are (βˆ’2, βˆ’2) and (2, βˆ’4), respectively, find the coordinates of P such that AP=37ABΒ and P lies on the line segment AB.
Vector ABβ†’=(4,βˆ’2). Then APβ†’=37ABβ†’=(127,βˆ’67). So

P=A+APβ†’=(βˆ’2+127,β€‰βˆ’2βˆ’67)=(βˆ’27,β€‰βˆ’207)

Answer: P=(βˆ’27,β€‰βˆ’207)


9. Find the coordinates of the points which divide the line segment joining A(βˆ’2, 2) and B(2, 8) into four equal parts.
Vector AB→=(4,6). Points at 1/4, 2/4, 3/4 from A:

  • t=14:β€…β€Š(βˆ’2,2)+14(4,6)=(βˆ’1,β€…β€Š2+1.5)=(βˆ’1,β€…β€Š7/2)

  • t=12:β€…β€Š(βˆ’2,2)+12(4,6)=(0,β€…β€Š5)

  • t=34:β€…β€Š(βˆ’2,2)+34(4,6)=(1,β€…β€Š13/2)

Answer: (βˆ’1,72),Β (0,5),Β (1,132)


10. Find the area of a rhombus if its vertices are (3, 0), (4, 5), (βˆ’1, 4) and (βˆ’2, βˆ’1) taken in order.
For a rhombus, area =12(product of diagonals). Diagonals are between opposite vertices:

  • Diagonal 1: between (3,0) and (βˆ’1,4): length d1=(βˆ’1βˆ’3)2+(4βˆ’0)2=16+16=β€…β€Š42.

  • Diagonal 2: between (4,5) and (βˆ’2,βˆ’1): length d2=(βˆ’2βˆ’4)2+(βˆ’1βˆ’5)2=36+36=β€…β€Š62.

Area =12d1d2=12β‹…(42)β‹…(62)=12β‹…48=24.

Answer: Area =24Β square units.

πŸ‘‹Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.