Tag: Class 12th Chapter 3 Matrices Solutions NCERT

  • Miscellaneous Exercise on Chapter 3, Class 12th, Maths, NCERT

    Question 1:

    If A and B are symmetric matrices, prove that ABBA is a skew-symmetric matrix.

    Answer (proof):

    Recall a matrix M is skew-symmetric if MT=M

    Given A and B are symmetric, so

    AT=A,BT=B.

    Consider the transpose of ABBA:

    (ABBA)T=(AB)T(BA)T=BTATATBT.

    Using symmetry of A and B we get

    (ABBA)T=BAAB=(ABBA).

    Thus (ABBA)T=(ABBA), so ABBA is skew-symmetric.

    (As a remark, every skew-symmetric matrix has zeros on its diagonal, so the diagonal entries of ABBA are all zero.)

    Question 2:

    Show that the matrix BAB is symmetric according as A is symmetric or skew-symmetric.


    Answer (proof):

    Let A and B be square matrices of the same order, and let B denote the transpose of B.
    We need to show that:

    • If A is symmetric, then BAB is symmetric.

    • If A is skew-symmetric, then BAB is skew-symmetric.


    Case 1: A is symmetric

    If A is symmetric, then A=A.

    Consider (BAB):

    (BAB)=BAB.

    But since A=A,

    (BAB)=BAB.

    Hence, BAB is symmetric.


    Case 2: A is skew-symmetric

    If A is skew-symmetric, then A=A.

    Now, take the transpose of BAB:

    (BAB)=BAB=B(A)B=BAB.

    Thus, (BAB)=BAB,
    which means BAB is skew-symmetric.

    Hence proved:
    The matrix BAB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.

    Question 3:

    Find the values of x,y,z if A=(02yzxyzxyz) satisfies ATA=I.


    Answer (solution):

    Compute ATA. A straightforward multiplication gives

    ATA=(2x20006y20003z2).

    For ATA=I we must have the diagonal entries equal to 1, hence

    2x2=1,6y2=1,3z2=1

    Therefore

    x2=12    x=±12,y2=16    y=±16,z2=13    z=±13.

    All choices of independent signs are allowed, so the solutions are

    (x,y,z)=(±12, ±16, ±13),

    (8 sign-combinations in total).

    Question 4:

    For what values of x does [1  2  1](120201102)(02x)=0 ?

    Answer (solution):

    First compute the product of the matrix with the column vector:

    (120201102)(02x)=(10+22+0x20+02+1x10+02+2x)=(4x2x)

    Now left-multiply by [1  2  1]:

    [1  2  1](4x2x)=14+2x+12x=4+4x

    Set equal to zero:

    4+4x=0x=1

    Question 5:

    If A=(3112), show that A25A+7I=0


    Answer (solution):

    Given

    A=(3112),I=(1001).

    Step 1: Compute A2

    A2=(3112)(3112)=(3(3)+1(1)3(1)+1(2)(1)(3)+2(1)(1)(1)+2(2))=(8553).

    Step 2: Compute 5A

    5A=5(3112)=(155510)

    Step 3: Compute 7I

    7I=7(1001)=(7007)

    Step 4: Substitute into A25A+7I

    A25A+7I=(8553)(155510)+(7007)

    Compute step-by-step:

    A25A=(815555(5)310)=(7007)

    Now add 7I:

    A25A+7I=(7007)+(7007)=(0000)

    Hence proved:

    A25A+7I=0

     

    Question 6:

    Find x if [x    5    1](102021203)(x41)=0.

    Solution:

    We will simplify step-by-step.

    Step 1: Multiply the matrix with the column vector

    (102021203)(x41)=(1x+04+210x+24+112x+04+31)=(x+292x+3)

    Step 2: Multiply the row vector [x  5  1] with the result

    [x  5  1](x+292x+3)=x(x+2)+(5)(9)+(1)(2x+3)

    Simplify:

    =x2+2x452x3=x248.

    Step 3: Set equal to zero

    x248=0x2=48

    x  =±43

    Question 7

    A manufacturer produces three products x,y,z sold in two markets with annual sales
    S=(100002000180006000200008000)(rows: Market I, Market II; columns: x,y,z).
    (a) Unit sale prices p=(2.501.501.00).(b) Unit costs c=(2.001.000.50).
    Find (a) total revenue in each market, (b) gross profit in each market.

    Solution

    Use matrix multiplication. Revenue vector R (marketwise) is

    R=Sp.

    Compute component-wise:

    Market I revenue

    10000(2.5)+2000(1.5)+18000(1)=25000+3000+18000=46000.

    Market II revenue

    6000(2.5)+20000(1.5)+8000(1)=15000+30000+8000=53000.

    So

    R=(4600053000) rupees.

    (b) Total cost vector C=Sc:

    Market I cost

    10000(2)+2000(1)+18000(0.5)=20000+2000+9000=31000.

    Market II cost

    6000(2)+20000(1)+8000(0.5)=12000+20000+4000=36000.

    So

    C=(3100036000) rupees.

    Gross profit for each market G=RC:

    G=(46000310005300036000)=(1500017000) rupeesFinal answers

    (a) Total revenue — Market I: Rs. 46,000; Market II: Rs. 53,000.
    (b) Gross profit — Market I: Rs. 15,000; Market II: Rs. 17,000.

    (Also note matrix forms: R=Sp,  C=Sc,  G=S(pc)

     

    Question 8:

    Find the matrix X such that X(123456)=(789246).

    Solution:

    We are given:

    X(123456)=(789246)

    Let:

    A=(123456),B=(789246).

    We need X such that XA=B.

    To isolate X, multiply both sides on the right by AT(AAT)1:
    (since A is 2×3, not square, we use this formula)

    X=BAT(AAT)1.

    Step 1: Compute AAT

    AAT=(123456)(142536)=(12+22+3214+25+3641+52+6342+52+62)=(14323277)

    Step 2: Compute (AAT)1

    First find determinant:

    AAT=(14)(77)(32)(32)=10781024=54

    So,

    (AAT)1=154(77323214).

    Step 3: Compute BAT

    BAT=(789246)(142536)

    =((7)(1)+(8)(2)+(9)(3)(7)(4)+(8)(5)+(9)(6)(2)(1)+(4)(2)+(6)(3)(2)(4)+(4)(5)+(6)(6))

    Compute each entry:

    BAT=(716272840542+8+188+20+36)=(501222864)

    Step 4: Compute X=BAT(AAT)1

    X=154(501222864)(77323214).

    Compute the product:

    First row:

    (50)(77)+(122)(32)=3850+3904=54,
    (50)(32)+(122)(14)=16001708=108.

    Second row:

    (28)(77)+(64)(32)=21562048=108,
    (28)(32)+(64)(14)=896+896=0

    So:

    X=154(541081080)=(1220).

    Choose the correct answer in the following questions:

    Question 9:

    If A=(αβγα) is such that A2=I, then find the correct relation among α,β,γ.

    Options:
    (A) 1+α2+βγ=0
    (B) 1α2+βγ=0
    (C) 1α2βγ=0
    (D) 1+α2βγ=0


    Solution:

    Given

    A=(αβγα)

    Compute A2:

    A2=(αβγα)(αβγα)=(α2+βγαβαβαγαγγβ+α2)=(α2+βγ00α2+βγ)

    Thus,

    A2=(α2+βγ)I.

    We are told A2=I, so:

    (α2+βγ)I=I

    That means:

    α2+βγ=1

    Rearranging:

    1α2βγ=0

    Correct Option:

    (C)  1α2βγ=0.

    Question 10:

    If the matrix A is both symmetric and skew-symmetric, then:

    Options:
    (A) A is a diagonal matrix
    (B) A is a zero matrix
    (C) A is a square matrix
    (D) None of these


    Solution:

    By definition:

    • A is symmetric if AT=A

    • A is skew-symmetric if AT=A

    If A is both, then:

    A=AT=A

    This implies:

    A=A2A=0A=0

    That means all elements of A are zero.

    Correct Option:

    (B)  A is a zero matrix.

    Question 11:

    If A is a square matrix such that A2=A, then find (I+A)37A.

    Options:
    (A) A
    (B) IA
    (C) I
    (D) 3A


    Solution:

    We are given that:

    A2=A.

    Let’s expand (I+A)3:

    (I+A)3=I3+3I2A+3IA2+A3

    Simplify each term using I2=I and A2=A:

    (I+A)3=I+3A+3A+A3

    Now, compute A3:

    A3=A2A=AA=A2=A

    Substitute this back:

    (I+A)3=I+3A+3A+A=I+7A

    Now compute:

    (I+A)37A=(I+7A)7A=I

    Final Answer:

    (C)  I

     

  • Exercise-3.3, Class 12th, Maths, Chapter 3, NCERT

    Q1. (i)

    Matrix A=[5121]

    This is a column matrix (3×1).


    Transpose:

    To find A(or AT), we interchange rows and columns.

    So,

    A=[5121]

    Answer:

    A=[5121]

    (This is now a row matrix (1×3).)

     

    Q1- (ii).

    Matrix B=[1123]

    This is a 2×2 matrix.

    Transpose:

    We swap rows with columns:

    B=[1213]

    Answer:

    B=[1213]

     

    Q1 (iii)

    Matrix

    A=[156356231]

    This is a 3×3 matrix (3 rows, 3 columns).


    To find: A (the transpose)

    To find the transpose, we interchange rows and columns — that is, the first row becomes the first column, the second row becomes the second column, and so on.


    Step-by-step:

    Row Becomes Column
    Row 1 = (1,  5,  6) Column 1 = [156]
    Row 2 = (3,  5,  6)

    Column 2 = [356]

    Row 3 = (2,  3,  1) Column 3 = [231]

    Transpose:

    A=[132553661]

     

    A=[5121]

    (This is now a row matrix (1×3).)

     

    Question 2.

    Given:

    A=[123579211],B=[415120131]

    We have to verify:

    1️⃣ (A+B)=A+B

    2️⃣ (AB)=AB


    Step 1: Find A + B

    Add corresponding elements:

    A+B=[(1)+(4)2+13+(5)5+17+29+0(2)+11+31+1]=[532699142]


    Now find (A + B)′

    Take the transpose — interchange rows and columns:

    (A+B)=[561394292]


    Step 2: Find A′ and B′ separately

    Transpose of A:

    A=[152271391]

    Transpose of B:

    B=[411123501]


    Step 3: Find A′ + B′

    A+B=[(1)+(4)5+1(2)+12+17+21+33+(5)9+01+1]=[561394292]

    This is exactly equal to (A+B).

    Hence,

    (A+B)=A+B

    Step 4: Now find A – B

    Subtract corresponding elements:

    AB=[(1)(4)213(5)517290(2)11311]=[318459320]


    Now find (A – B)′

    (AB)=[343152890]

    Step 5: Find A′ – B′

    AB=[(1)(4)51(2)12172133(5)9011]=[343152890]

    This is exactly equal to (AB).

    Hence,

    (AB)=AB

     

    Question 3.

    Given

    A=[341201]


    B=[121123]

    , then verify that

    (i) (A + B)′ = A′ + B′ 

    (ii) (A – B)′ = A′ – B′

     Determine A from A

    Remember: A is the transpose of A.
    So to get A, we transpose A again.

    A=(A)=[310421]

    Hence

    A=[310421],B=[121123]

    Compute A+B

    Add corresponding elements:

    A+B=[3+(1)1+20+14+12+21+3]=[211544]

     Compute (A+B)

    Transpose the above matrix:

    (A+B)=[251414]

     Compute A+B

    We already know:

    A=[341201],B=[112213]

    Now add elementwise:

    A+B=[3+(1)4+11+22+20+11+3]=[251414]

    Therefore

    (A+B)=A+B

     Compute AB

    AB=[3(1)1201412213]=[431302] Compute (AB)

    (AB)=[433012]

     Compute AB

    AB=[3(1)4112220113]=[433012]

    Therefore

    (AB)=AB

    Question 4.

    Given:

    A=[2312],B=[1012]

    We need to find

    (A+2B)

     Find A from A

    Since A=[2312],

    Transpose it to get A:

    A=(A)=[2132]

     Compute 2B

    Multiply each element of B by 2:

    2B=[2×(1)2×02×12×2]=[2024]

     Compute A+2B

    A+2B=[2132]+[2024]=[4156]

     Find (A+2B)

    Take the transpose:

    (A+2B)=[4516]

    Question 5.

    For the matrices A and B, verify that (AB)′ = B′A′, where

    Concept Recap

    For any conformable matrices A and B:

    (AB)=BA

    That is, the transpose of a product = product of transposes in reverse order.

    Now, let’s check numerically.


    (i)

    A=[143],B=[121]


    Step 1️⃣: Compute AB

    Since A is 3×1 and B is 1×3,
    AB will be a 3×3 matrix.

    AB=[143][121]=[1(1)1(2)1(1)4(1)4(2)4(1)3(1)3(2)3(1)]=[121484363]

     Find (AB)

    Transpose means interchange rows and columns:

    (AB)=[143286143]

     Compute BA

    Now find B and A.

    B=[121],A=[143]

    Multiply B (3×1) with A (1×3):

    BA=[121][143]=[(1)(1)(1)(4)(1)(3)(2)(1)(2)(4)(2)(3)(1)(1)(1)(4)(1)(3)]

    =[143286143]

    Hence,

    (AB)=BA


    (ii)

    A=[012],B=[157]

    Compute AB

    AB=[012][157]=[0(1)0(5)0(7)1(1)1(5)1(7)2(1)2(5)2(7)]=[00015721014]

     Find (AB)

    (AB)=[01205100714]

    Compute BA

    B=[157],A=[012]

    Multiply:

    BA=[157][012]=[1(0)1(1)1(2)5(0)5(1)5(2)7(0)7(1)7(2)]=[01205100714]

    Hence,

    (AB)=BA

     

    Question 6.

    verify that A′ A = I

    (i)

    A=[cosαsinαsinαcosα]

     Find A

    A=[cosαsinαsinαcosα]

    Compute AA

    AA=[cosαsinαsinαcosα][cosαsinαsinαcosα]
    AA=[(cos2α+sin2α)(cosαsinαsinαcosα)(sinαcosαcosαsinα)(sin2α+cos2α)]=[1001]=I

    Hence, AA=I

    (ii)

    A=[sinαcosαcosαsinα]

     Find A

    A=[sinαcosαcosαsinα]

     Compute AA

    AA=[sinαcosαcosαsinα][sinαcosαcosαsinα]
    AA=[(sin2α+cos2α)(sinαcosαcosαsinα)(cosαsinαsinαcosα)(cos2α+sin2α)]=[1001]=I

    Hence, AA=I

    Q7.

    Recall:

    • A matrix A is symmetric if A=A.

    • A matrix A is skew-symmetric if A=A. (Note diagonal entries of a skew-symmetric matrix must be 0.)


    (i) Show A is symmetric

    A=[115121513]

    Find the transpose A (swap rows and columns):

    A=[115121513]

    We see A=A.
    Therefore A is symmetric


    (ii) Show A is skew-symmetric

    A=[011101110]

    Compute the transpose:

    A=[011101110]

    Compute A:

    A=[011101110]

    We have A=A. Also all diagonal entries are 0, as required.

    Therefore A is skew-symmetric

     

    Question 8.

    (i) (A + A′) is a symmetric matrix

    (ii) (A – A′) is a skew symmetric matrix

    Given

    A=[1567].

    First find the transpose:

    A=[1657].


    (i) A+A

    Compute:

    A+A=[1567]+[1657]=[2111114]

    Take its transpose:

    (A+A)=[2111114]Since (A+A)=A+A, the matrix A+A is symmetric.


    (ii) AA

    Compute:

    AA=[1567][1657]=[0110]

    Take its transpose:

    (AA)=[0110]=(AA)

    Since (AA)=(AA), the matrix AA is skew-symmetric.

     

    Question 9. Find

    12(A+A)and12(AA)

    We are given:

    A=[0aba0cbc0]

     Find A

    Transpose means interchange rows and columns:

    A=[0aba0cbc0] Compute A+A

    Add corresponding entries of A and A:

    A+A=[0+0a+(a)b+(b)(a)+a0+0c+(c)(b)+b(c)+c0+0]=[000000000]

     Compute AA

    Subtract corresponding entries:

    AA=[00a(a)b(b)(a)a00c(c)(b)b(c)c00]=[02a2b2a02c2b2c0]

    Multiply by ½

    12(A+A)=12[000000000]=[000000000]
    12(AA)=12[02a2b2a02c2b2c0]=[0aba0cbc0]

    Final Answers

    12(A+A)=[000000000],12(AA)=[0aba0cbc0]

    Question 10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

    we’ll write each matrix A as

    A=12(A+A)  +  12(AA),

    where S=12(A+A) is symmetric and K=12(AA) is skew-symmetric. I’ll give S and K for each part.


    (i) A=[3511]

    A=[3151]
    S=12(A+A)=12[6662]=[3331]


    K=12(AA)=12[0440]=[0220]

    So A=S+K with S symmetric and K skew.


    (ii) A=[622231213]

    This matrix is already symmetric (check A=A), so

    S=12(A+A)=A=[622231213],K=12(AA)=0=[000000000].


    (iii) A=[331221452]

    First compute A=[324325112]

    Then

    S=12(A+A)=12[615144544]=[3125212225222],

    which is symmetric, and

    K=12(AA)=12[053506360]=[0523252033230],

    which is skew-symmetric. (You can check S=S and K=K)


    (iv) A=[1512]

    A=[1152]
    S=12(A+A)=12[2444]=[1222],

    K=12(AA)=12[0660]=[0330].

    Question 11

    Given:
    A and B are symmetric matrices of the same order.
    That means:

    A=AandB=B

    We need to find the nature of the matrix ABBA

     Take transpose of ABBA

    (ABBA)=(AB)(BA)=BAAB

    Since A=A and B=B,

    (ABBA)=BAAB=(ABBA)

     Interpretation

    A matrix M is skew-symmetric if M=M.

    Here we found (ABBA)=(ABBA) Therefore, ABBA is a skew-symmetric matrix.

    Correct Option: (A) Skew symmetric matrix


    Question 12

    Given:

    A=[cosαsinαsinαcosα],andA+A=I

    We must find the value of α

    Compute A

    A=[cosαsinαsinαcosα]

     Compute A+A

    A+A=[cosα+cosαsinα+sinαsinαsinαcosα+cosα]=[2cosα002cosα]

     Given A+A=I

    [2cosα002cosα]=[1001]

    This gives:

    2cosα=1    cosα=12

     Solve for α

    cosα=12α=π3

     Final Answers 
    1️⃣ ABBA → Skew-symmetric matrix
    2️⃣ A+A=Iα=π3

  • Exercise-3.2, Class 12th, Maths, Chapter 3 – Matrices, NCERT

    Question 1

    Let

    A=[2432],B=[1325],C=[2534]

    Find:
    (i) A + B  (ii) A − B  (iii) 3A − C  (iv) AB  (v) BA


    Solution

    (i) A + B =
    Add corresponding elements:

    A+B=[2+14+33+(2)2+5]=[3717]

     

    (ii) A − B =

    AB=[21433(2)25]=[1153]

     


    (iii) 3A − C =
    First, find 3A:

    3A=[61296]

    Subtract C:

    3AC=[6(2)1259364]=[8762]


    (iv) AB =

    AB=[2(1)+4(2)2(3)+4(5)3(1)+2(2)3(3)+2(5)]=[626119]

     

    (v) BA =

    BA=[1(2)+3(3)1(4)+3(2)(2)(2)+5(3)(2)(4)+5(2)]=[1110112]


    Final Answers:

    (i)

    A+B=[3717]

    (ii)

    AB=[1153]

    (iii)

    3AC=[8762]

    (iv)

    AB=[626119]

    (v)

    BA=[1110112]


    Question 2

    Compute the following:

    (i)

    [abba]+[abba]

    (ii)

    [a2+b2b2+c2c2+a2a2+b2]+[c2+2ab2bc2ac2ab]

    (iii)

    [148528]+[61251653]+[768024]

    (iv)

    [cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]


    Solution

    (i) Add element-wise:

    =[2a2b02a]


    (ii)

    =[a2+b2+c2+2abb2+c2+2bcc2+a22aca2+b22ab]


    (iii)
    Add element-wise:

    =[14222121915]

     

    (iv)

    =[1111]


    Question 3

    Compute the indicated products:

    (i)

    [abba][abba]

    (ii)

    [234][123]

    (iii)

    [1223][123231]


    Solution

    (i)

    =[a2+b200a2+b2]

    (ii)

    2×1+3×2+4×3=20

    (iii)

    =[3418139]


    Question 4

    If

    A=[215011],  B=[314220],  C=[410312]

    Compute (A + B), (B − C), and verify A + (B − C) = (A + B) − C.


    A + B =

    [509211]

    B − C =

    [124112]

    A + (B − C) =

    [119101]

    (A + B) − C =

    [119101]

    Hence, verified.


    Question 5

    A=[211335625],B=[235114756]

    Compute 3A − 5B


    Step 1:

    3A=[633991518615],5B=[1015255520352530]

    Step 2: Subtract:

    3A5B=[41222445171915]

     

    Question 6

    Simplify:

    [cosxsinxsinxcosx][sinxcosxcosxsinx]

     

    Solution

    Multiply:
    (1,1):

    cosxsinx+sinxcosx=sin(2x)

    Result:

    [sin(2x)00sin(2x)]


    Question 7

    Find X and Y if

    (i)

    X+Y=[7025],XY=[3003]

    (ii)

    2X+3Y=[2340],3X+2Y=[2215]


    Solution

    Case (i):
    Add and subtract:

    2X=(X+Y)+(XY)=[10028]X=[5014]

    2Y=(X+Y)(XY)=[4022]Y=[2011]


    Case (ii):
    Multiply first by 3, second by 2 and subtract:

    (6X+9Y)(6X+4Y)=5Y=[2131410]

    Y=[251351452]

    Substitute in

    2X+3Y=[2340]

    X=[4535252]

     

    Question 8

    Find X, if

    Y=[3214]

    and

    2X+Y=[1032]


    Solution

    Given:

    2X+Y=[1032]

    Substitute Y:

    2X+[3214]=[1032]

    Now, move Y to RHS:

    2X=[1032][3214]=[2242]

    Divide both sides by 2:

    X=[1121]


    Question 9

    Find the values of x and y, if

    2[130x]+[y012]=[5618]


    Step 1: Expand the scalar multiplication

    2[130x]=[2602x]

    So the equation becomes:

    [2602x]+[y012]=[5618]


    Step 2: Add the two matrices on the LHS

    [2+y6+00+12x+2]=[5618]


    Step 3: Compare corresponding elements

    1. From (1,1): 2+y=5y=3

    2. From (2,2): 2x+2=82x=6x=3


    Final Answers:

    x=3,y=3


    Question 10

    Solve for x, y, z, t if

    2[xzyt]+3[1102]=[3546]


    Solution

    Step 1: Multiply 2 and 3 through matrices:

    [2x2z2y2t]+[3306]=[3546]

    Step 2: Add LHS:

    [2x+32z32y2t+6]=[3546]

    Step 3: Equate corresponding elements:

    1. 2x+3=3x=0

    2. 2z3=5z=4

    3. 2y=4y=2

    4. 2t+6=6t=0

    Hence

    x=0,  y=2,  z=4,  t=0


    Question 11

    If

    [x2]+[1y]=[105]

    Find x and y.


    Solution

    Add LHS element-wise:

    [x12+y]=[105]

    Comparing elements:

    x1=10x=11
    2+y=5y=3

    Answer:
    x=11,y=3


    Question 12

    Given equation:

    3[xyzw]=[x612w]+[4x+yz+w3]

    We need to find x  and  y.


    Step 1: Expand the LHS

    3[xyzw]=[3x3y3z3w]


    Step 2: Add the two matrices on RHS

    [x612w]+[4x+yz+w3]=[x+46+x+y1+z+w2w+3]


    Step 3: Equate the LHS and RHS

    [3x3y3z3w]=[x+46+x+y1+z+w2w+3]


    Step 4: Compare corresponding elements

    1. From (1, 1): 3x=x+42x=4x=2.

    2. From (1, 2): 3y=6+x+y2y=6+x2y=6+22y=8y=4.

    3. Other entries (involving z, w) are not required here.


    Final Answer:

    x=2,y=4

    Question 13

    If

    F(x)=[cosxsinx0sinxcosx0001],

    prove that F(x)F(y)=F(x+y)


    Solution

    Compute F(x)F(y):

    F(x)F(y)=[cosxsinx0sinxcosx0001][cosysiny0sinycosy0001]

    Multiply the first two rows:

    Top-left 2×2 block:

    [cosxcosysinxsiny(sinxcosy+cosxsiny)sinxcosy+cosxsinycosxcosysinxsiny]

    But using angle addition identities:

    cos(x+y)=cosxcosysinxsiny
    sin(x+y)=sinxcosy+cosxsiny

    So,

    F(x)F(y)=[cos(x+y)sin(x+y)0sin(x+y)cos(x+y)0001]=F(x+y)

    Hence proved.


    Question 14

    to show that matrix multiplication is not commutative, i.e.

    ABBA.

    Let’s solve step-by-step carefully.


    Given matrices

    A=(5167),B=(2134).


    Step 1: Compute AB

    AB=(5167)(2134).

    Multiply row by column:

    AB=((5)(2)+(1)(3)(5)(1)+(1)(4)(6)(2)+(7)(3)(6)(1)+(7)(4))=(1035412+216+28)=(713334)


    Step 2: Compute BA

    BA=(2134)(5167)

    Multiply:

    BA=((2)(5)+(1)(6)(2)(1)+(1)(7)(3)(5)+(4)(6)(3)(1)+(4)(7))=(10+62+715+243+28)=(1653925)


    Step 3: Compare

    AB=(713334),BA=(1653925).

    Clearly ABB


    Hence proved:
    Matrix multiplication is not commutative in general:

    ABBA.

     

    15. Find A25A+6I, where

    A=(201213110)

    Compute A2:

    A2=(512945414)

    Now 5A=(100510515550)
    and 6I=(600060006)

    Add them:

    A25A+6I=(512945414)+(100510515550)+(600060006)=(11315101410).


    16. If A=(102021203), prove A36A2+7A+2I=0.

    Compute (steps shown succinctly):

    A2=(5082458013),A3=(210341282334055).

    Now form A36A2+7A+2I. Term-by-term:

    • 6A2=(3004812243048078)

    • 7A=(7014014714021)

    • 2I=(200020002)

    Adding A3+(6A2)+7A+2I gives the zero matrix. So the identity holds.


    17.

    Given:

    A=(3242),I=(1001).

    We have to find the scalar k such that

    A2=kA2I.


    Step 1: Compute A2

    A2=(3242)(3242)=(33+(2)43(2)+(2)(2)43+(2)44(2)+(2)(2)).

    Simplify each element:

    A2=(986+41288+4)=(1244)


    Step 2: Write the given relation

    A2=kA2I.

    Substitute A2, A, and I:

    (1244)=k(3242)2(1001).

    Simplify the right-hand side:

    (3k22k4k2k2).


    Step 3: Equate corresponding entries

    {3k2=1,2k=2,4k=4,2k2=4.Now solve any one (they should all give the same k):

    • From the second: 2k=2k=1

    • From the first: 3k2=1k=1

    • Others also give k=1.

    All consistent.


    Final Answer:

    k=1.


    18. If A=(0tan(α2)tan(α2)0) and I is 2×2 identity, show

    I+A=(IA)(cosαsinαsinαcosα)

    (That is the standard Cayley-type relation when A uses tan(α/2)

    Proof sketch (algebraic verification): Put t=tan(α2). 

    Then

    I+A=(1tt1),IA=(1tt1)

    Use the trig identities

    cosα=1t21+t2,sinα=2t1+t2

    Multiply (IA) by the rotation matrix R(α)=(cosαsinαsinαcosα)

    (IA)R(α)=(c+tss+tctc+sts+c),

    substitute c=cosα, s=sinα and the formulas above; each entry simplifies to match I+A=(1tt1). Thus the identity holds.

    (If your printed sign convention for A is different — e.g. the off-diagonal signs reversed — paste the exact matrix and I’ll adapt the algebra.)


    19.

    A trust fund has ` 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

    (a) Rs 1800 (b) Rs 2000

    Answer – 

    A trust fund has ₹30,000 to invest in two types of bonds:

    • Bond 1 → 5 % interest per year

    • Bond 2 → 7 % interest per year

    We must divide ₹30,000 between them so that the annual total interest is:
    (a) ₹ 1 800 (b) ₹ 2 000


    Step 1: Define variables

    Let

    Then:{x+y=300000.05x+0.07y=I

    where I = required interest.


    Step 2: Matrix form

    [110.050.07]A[xy]=[30000I]That is,Ax=b.

    We can find x=A1b


    Compute A1

    For a 2×2 matrix A=[abcd]

    A1=1adbc[dbca]

    Here
    a=1, b=1, c=0.05, d=0.07

    det(A)=(1)(0.07)(1)(0.05)=0.02

    So:

    A1=10.02[0.0710.051]=[3.5502.550].

    Step 3: Multiply to find x and y

    [xy]=A1[30000I]=[3.5502.550][30000I]

    Compute components:

    x=3.5(30000)50I,y=2.5(30000)+50I.

    Simplify:

    x=10500050I,y=75000+50I.

    (a) For I=1800

    x=10500050(1800)=10500090000=15000,
    y=75000+50(1800)=75000+90000=15000.

    (b) For I=2000

    x=10500050(2000)=105000100000=5000,
    y=75000+50(2000)=75000+100000=25000.

    ✅ Final Answers Summary

    Case Required Interest 5 % Bond (x) 7 % Bond (y)
    (a) ₹ 1 800 ₹ 15 000 ₹ 15 000
    (b) ₹ 2 000 ₹ 5 000 ₹ 25 000

    So, by matrix multiplication,

    [xy]=[10500050I75000+50I],

    20. Bookshop: 10 dozen chemistry, 8 dozen physics, 10 dozen economics books; prices ₹80, ₹60, ₹40. Find total receipt.

    First convert dozens to counts: 10 dozen = 120, 8 dozen = 96, 10 dozen = 120. Multiply quantities by unit prices:

    120×80+96×60+120×40=9600+5760+4800=20,160.

    (Matrix form: [120 96 120](806040)=20160


    21. (Multiple choice) With X of order 2×n, Y of order 3×k, Z of order 2×p, W of order n×3, P of order p×k:

    What restriction on n,k,p so that PY+WY is defined?

    • For PY to be defined: P (size p×k) times Y (size 3×k) requires number of columns of P = number of rows of Y, so k=3.

    • For WY to be defined: W (size n×3) times Y (size 3×k) is defined for any n once k is known.

    • For PY and WY to be addable, their resulting orders must match: PY is p×k and WY is n×k. So p=n.

    Thus the restriction is k=3 and p=n.

    Answer: (A) k=3,p=n.


    22. If n=p, then order of 7X5Z where X is 2×n and Z is 2×p?

    If n=p then both X and Z are 2×n. So 7X5Z is of order 2×n. Answer: (B) 2×n.

  • Exercise-3.1, Class 12th, Maths, Chapter 3- Matrices, NCERT

    Exercise 3.1


    Question 1:

    In the matrix

    A=[251971517312125]

    write:
    (i) The order of the matrix
    (ii) The number of elements
    (iii) Write the elements a₁₃, a₂₁, a₃₃, a₂₄, a₂₃.

    Answer:
    (i) Order = 3 × 4
    (ii) Number of elements = 3 × 4 = 12
    (iii) a₁₃ = 19, a₂₁ = 1, a₃₃ = 12, a₂₄ = 3, a₂₃ = 17.


    Question 2:

    If a matrix has 24 elements, what are the possible orders it can have? What if it has 13 elements?

    Answer:
    We know that if a matrix has m × n elements, then total elements = m × n.

    (i) For 24 elements:
    Possible orders = (1,24), (2,12), (3,8), (4,6), (6,4), (8,3), (12,2), (24,1)

    (ii) For 13 elements (prime number):
    Possible orders = (1,13), (13,1)


    Question 3:

    If a matrix has 18 elements, what are its possible orders? What if it has 5 elements?

    Answer:
    (i) For 18 elements: m×n=18
    Possible orders = (1,18), (2,9), (3,6), (6,3), (9,2), (18,1)

    (ii) For 5 elements (prime): (1,5), (5,1)


    Question 4:

    Construct a 2 × 2 matrix A = [aᵢⱼ] where:

    (i) aᵢⱼ = 2i − j
    (ii) aᵢⱼ = i² − 3j
    (iii) aᵢⱼ = i² / 2j

    Answer:
    For i, j = 1, 2

    (i)

    A=[2(1)12(1)22(2)12(2)2]=[1032]

    (ii)

    A=[123(1)123(2)223(1)223(2)]=[2512]

    (iii)

    A=[122×1122×2222×1222×2]=[121421]


    Question 5:

    Construct a 3 × 4 matrix where:
    (i) aᵢⱼ = ½ (i − 3j)
    (ii) aᵢⱼ = 2i − j

    Answer:

    (i)

    A=[12.545.50.523.5501.534.5]

    (ii)

    A=[101232105432]


    Question 6:

    Find the values of x, y, and z from the following equations:

    (i)

    [x5zy15]=[262158]

    (ii)

    [5zx+y58x+y]=[x+zyzxzyz]

    Answer:

    (i) Comparing elements:
    x = 2, y = 1, z = 2.

    (ii) On comparing:
    x = 3, y = 1, z = 2.


    Question 7:

    Find a, b, c, d from the equation:

    [ab2ab2a+c3cd]=[015013]

    Answer:
    Equating elements:
    a − b = 0
    2a − b = −15
    2a + c = 0
    3c − d = 13

    Solving, we get
    a = −15, b = −15, c = 30, d = 77.


    Question 8:

    A = [aᵢⱼ] is a square matrix if:
    (A) m < n  (B) m > n  (C) m = n  (D) None of these

    Answer:
    (C) m = n


    Question 9:

    Which values of x and y make the following matrices equal?

    [3x+75y+12]=[3x028]

    Answer:
    3x + 7 = −3x ⇒ 6x = −7 ⇒ x = −7/6
    y + 1 = −2 ⇒ y = −3

    x = −7/6, y = −3


    Question 10:

    The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:
    (A) 27 (B) 18 (C) 81 (D) 512

    Answer:
    Each entry can be 0 or 1, i.e., 2 possibilities per element.
    Total = 23×3=29=512

    Answer: (D) 512