Tag: Determinants class 12th Maths solutions

  • Miscellaneous Exercises on Chapter 4, Class 12th, Maths

    Question 1.
    Prove that the determinant

    xsinθcosθsinθx1cosθ1x

    is independent of θ.

    Solution.

    Compute the determinant by expanding along the first row:

    D=xx11xsinθsinθ1cosθx+cosθsinθxcosθ1

    Evaluate each 2×2 determinant:

    xx11x=x((x)(x)11)=x(x21)=x3x,sinθsinθ1cosθx=sinθ((sinθ)x1cosθ)=sinθ(xsinθcosθ)=xsin2θ+sinθcosθ,cosθsinθxcosθ1=cosθ((sinθ)1(x)cosθ)=cosθ(sinθ+xcosθ)=sinθcosθ+xcos2θAdd the three parts:

    D=(x3x)+(xsin2θ+sinθcosθ)+(sinθcosθ+xcos2θ)=x3x+x(sin2θ+cos2θ)+(sinθcosθsinθcosθ)=x3x+x1+0=x3Thus the determinant equals x3, which does not depend on θ

    Question 2.
    Evaluate the determinant

    cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    Solution:

    Let

    D=cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    We will expand along the second row since it has a zero term.

    Step 1: Expansion along second row

    D=(sinβ)(1)2+1cosαsinβsinαsinαsinβcosα

    +(cosβ)(1)2+2cosαcosβsinαsinαcosβcosα

    Simplify the cofactors:

    D=sinβcosαsinβsinαsinαsinβcosα+cosβcosαcosβsinαsinαcosβcosα

    Step 2: Evaluate the 2×2 determinants

    For the first:

    cosαsinβsinαsinαsinβcosα=(cosαsinβ)(cosα)(sinα)(sinαsinβ)

    =sinβ(cos2α+sin2α)=sinβ.

    For the second:

    cosαcosβsinαsinαcosβcosα=(cosαcosβ)(cosα)(sinα)(sinαcosβ)

    =cosβ(cos2α+sin2α)=cosβ.

    Step 3: Substitute back

    D=sinβ(sinβ)+cosβ(cosβ)=sin2β+cos2β=1

     Final Answer:

    D=1

    Question 3.
    If

    A1=(3111565522)andB=(122130021),

    find (AB)1

    Solution:

    We know the property of inverse of a product:

    (AB)1=B1A1

    Step 1: Find B1

    Let

    B=(122130021)

    To find B1, compute by the adjoint method (or via row operations).
    After simplification, we get:

    B1=(326112225)

    Step 2: Compute (AB)1=B1A1

    A1=(3111565522)

    Now multiply B1 and A1:

    (AB)1=(326112225)(3111565522)

    Step 3: Matrix multiplication

    (AB)111=3(3)+2(15)+6(5)=930+30=9,(AB)121=3(1)+2(6)+6(2)=3+1212=3,(AB)131=3(1)+2(5)+6(2)=310+12=5,(AB)211=1(3)+1(15)+2(5)=315+10=2,(AB)221=1(1)+1(6)+2(2)=1+64=1,(AB)231=1(1)+1(5)+2(2)=15+4=0,(AB)311=2(3)+2(15)+5(5)=630+25=1,(AB)321=2(1)+2(6)+5(2)=2+1210=0,(AB)331=2(1)+2(5)+5(2)=210+10=2.

    Step 4: Write the result

    (AB)1=(935210102)

    Final Answer:

    (AB)1=(935210102)

    Question 4.
    Let

    A=(121231115)

    Verify that
    (i) [adjA]1=adj(A1)
    (ii) (A1)1=A


    Answer & proof

    (i) General identity and verification.

    For any invertible square matrix A we have the identity

    adjA=(detA)A1

    Taking inverses on both sides (and using (cM)1=c1M1 for scalar c0) gives

    (adjA)1=((detA)A1)1=(detA)1(A1)1=(detA)1A

    Also for the inverse matrix A1 we have

    adj(A1)=(det(A1))(A1)1

    But det(A1)=(detA)1 and (A1)1=A, so

    adj(A1)=(detA)1A

    Comparing the two expressions we obtain the required equality for any invertible A:

    (adjA)1=adj(A1)

    Verification for the given matrix A.

    Compute detA, adjA and the two sides explicitly:

    detA=5

    One finds

    adjA=(1491941111),A1=15(1491941111)=(14/59/51/59/54/51/51/51/51/5)

    Then

    (adjA)1=(1/detA)A=15(121231115)=(1/52/51/52/53/51/51/51/51)

    And using adj(A1)=(detA1)(A1)1=(detA)1A gives exactly the same matrix. So the identity holds for this A.

     

    (ii):

    Given

    A=(121231115),

    verify that

    (A1)1=A

    Step 1. Find A1

    We already know from earlier computation that

    det(A)=5

    Now, let’s find the adjoint of A:

    Compute cofactors of A:

    Cofactor matrix of A=(1491941111)

    So the adjoint of A is its transpose:

    adj(A)=(1491941111)

    Hence,

    A1=1det(A)adj(A)=15(1491941111)=(1459515954515151515)

    Step 2. Find (A1)1

    By the definition of matrix inverse:

    A1A=I

    Multiplying both sides on the left by (A1)1, we get:

    (A1)1(A1)A=(A1)1I,

    which simplifies to:

    A=(A1)1

    Step 3. Verify numerically

    If you actually take the inverse of A1 (by determinant and adjoint, or by direct computation),
    you’ll get back the original matrix A:

    (A1)1=(121231115)=A

    Final Answer:

    (A1)1=A.

    Question 5.
    Evaluate

    xyx+yyx+yxx+yxy

    Solution:

    Let

    D=xyx+yyx+yxx+yxy

    We will simplify this determinant using column operations.

    Step 1: Simplify columns

    Let’s apply the operation

    C3C3C1C2

    (i.e., replace the third column with C3C1C2)

    Compute the new third column entries:

    • For first row: (x+y)xy=0

    • For second row: xy(x+y)=xyxy=2y

    • For third row: y(x+y)x=yxyx=2x

    So the new determinant becomes:

    D=xy0yx+y2yx+yx2x

    Step 2: Expand along the first row (since it has a zero)

    D=xx+y2yx2xyy2yx+y2x

    Step 3: Compute each 2×2 determinant

    1. For the first one:

    x+y2yx2x=(x+y)(2x)(2y)(x)

    =2x(x+y)+2xy=2x22xy+2xy=2x2.

    1. For the second one:

    y2yx+y2x=y(2x)(2y)(x+y)

    =2xy+2y(x+y)=2xy+2xy+2y2=2y2

    Step 4: Substitute back

    D=x(2x2)y(2y2)=2x32y3=2(x3+y3)

    Final Answer:

    xyx+yyx+yxx+yxy=2(x3+y3).

    Question 6.
    Evaluate

    Solution:

    Let

    We’ll simplify this determinant using row operations.

    Step 1: Simplify rows

    Perform the following operations:

    Compute the new rows:

    • R2=(1,x+y,y)(1,x,y)=(0,y,0)

    • R3=(1,x,x+y)(1,x,y)=(0,0,y)

    So the new determinant becomes:

    Step 2: Expand along the first column

    Final Answer:

    Question 7.
    Solve the system

    {2x+3y+10z=4,4x6y+5z=1,6x+9y20z=2

    Solution (matrix method)

    Put u=1x,  v=1y,  w=1z. Then the system becomes linear in u,v,w:

    2u+3v+10w=4,4u6v+5w=1,6u+9v20w=2

    In matrix form At=b where

    A=(23104656920),t=(uvw),b=(412)

    Solve t=A1b. Doing this (or by Cramer’s rule / row reduction) gives

    t=(uvw)=(121315)

    So

    u=12,  v=13,  w=15

    Convert back to x,y,z:

    x=1u=2,y=1v=3,z=1w=5

    Check

    Substitute (x,y,z)=(2,3,5) into the original equations:

    22+33+105=1+1+2=4,4263+55=22+1=1

    ,62+93205=3+34=2

    all hold.

    Answer: x=2,  y=3,  z=5.

    Question 8.
    If x,y,z are nonzero real numbers, then the inverse of the matrix

    A=(x000y000z)

    is which of the following?

    (A) (x1000y1000z1)


    (B) xyz(x1000y1000z1)


    (C) 1xyz(x000y000z)


    (D) 1xyz(100010001)

    Answer: (A).

    Reason: For a diagonal matrix, the inverse (when all diagonal entries are nonzero) is the diagonal matrix of reciprocals. Check AA1=I:

    (x000y000z)(x1000y1000z1)=(100010001)

    Question 9.
    Let

    Which of the following is true?
    (A) det(A)=0
    (B) det(A)(2,)
    (C) det(A)(2,4)
    (D) det(A)[2,4]

    Solution

    Compute the determinant by expansion along the first row:

    So detA=2(1+sin2θ)

    Since 0sin2θ1, we have

    Thus det(A)[2,4]. The correct choice is (D).

     

     

     

     

  • Exercise-4.5-Part-2, Class 12th, Maths, NCERT

    Question 15.
    If

    A=(235324112),

    find A1. Using A1, solve the following system of equations:

    {2x3y+5z=11,3x+2y4z=5,x+y2z=3.

    Solution:

    We have

    A=(235324112)

    Let b=(1153)

    We know that

    Ax=bx=A1b

    Step 1: Find A1

    Using the adjoint and determinant method,

    det(A)=1

    The adjugate (adjoint) of A is:

    adj(A)=(01229231513)

    Hence,

    A1=1det(A)adj(A)=1×(01229231513)=(01229231513).

    Step 2: Use A1 to find x,y,z

    (xyz)=A1b=(01229231513)(1153)

    Now multiply:

    x=0(11)+1(5)+(2)(3)=5+6=1,y=2(11)+9(5)+(23)(3)=2245+69=2,z=1(11)+5(5)+(13)(3)=1125+39=3.

    Final Answers:

    A1=(01229231513),x=1,y=2,z=3

    Question 16.
    The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60.
    The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹90.
    The cost of 6 kg onion, 2 kg wheat and 3 kg rice is ₹70.
    Find the cost of each item per kilogram using the matrix method.


    Solution:

    Let the cost per kilogram of onion, wheat and rice be ₹o, ₹w and ₹r respectively.

    Then, according to the question, we have:

    4o+3w+2r=60,2o+4w+6r=90,6o+2w+3r=70

    Step 1: Write in matrix form

    (432246623)(owr)=(609070)

    That is,

    Ax=b,

    where

    A=(432246623),x=(owr),b=(609070)

    Step 2: Find A1

    We have

    det(A)=50,

    and the adjugate of A is

    adj(A)=(051030020201010)

    Hence,

    A1=150(051030020201010)=(01101535025251515)

    Step 3: Find x=A1

    (owr)=(01101535025251515)(609070)

    Now multiplying:

    o=0(60)+(110)(90)+(15)(70)=9+14=5,w=(35)(60)+0(90)+(25)(70)=3628=8,r=(25)(60)+(15)(90)+(15)(70)=24+18+14=8.

    Final Answers:

    Cost of onion per kg=5,Cost of wheat per kg=8,Cost of rice per kg=8

     

  • Exercise-4.5, Class 12th, Maths, Chapter 4, NCERT

    Examine the consistency of the system of equations in Exercises 1 to 6.

    1.
    {x+2y=22x+3y=3

    Solution. From the first, x=22y. Substitute: 2(22y)+3y=34y=3y=1. Then x=0.
    Unique solution: (x,y)=(0,1)


    2.
    {2xy=5x+y=4

    Solution. From second y=4x. Substitute: 2x(4x)=53x=9x=3. Then y=1
    Solution: (3,1)


    3.
    {x+3y=52x+6y=8

    Solution. The second equation is 2(x+3y)=10, but RHS is 8, not 10. The two equations are inconsistent (parallel, no solution).
    No solution. 


    4.
    {x+y+z=12x+3y+2z=2ax+ay+2az=4

    Solution. From (1) & (2): subtract 2(1) from (2) → y=0. Then x+z=1.
    Third equation is a(x+y+2z)=4. With y=0 this becomes a(x+2z)=4. Using x=1z:

    a((1z)+2z)=a(1+z)=41+z=4a(if a0).

    So for a0: z=4a1,  x=24a,  y=0 (unique solution).
    If a=0: third eqn becomes 0=4 impossible → inconsistent.

    So: consistent (unique) for a0 with (x,y,z)=(24a,0,4a1). Inconsistent when a=0.  depending on a.


    5.
    {3xy2z=22yz=13x5y=3

    Solution. From second: z=2y+1. From third: x=(3+5y)/3. Substitute into first:

    33+5y3y2(2y+1)=2(3+5y)y4y2=21=2,

    contradiction. So inconsistent (no solution)


    6.
    {5xy+4z=52x+3y+5z=25x2y+6z=1

    Solution. Subtract (1) from (3): y+2z=6y2z=6. Put in (2):

    2x+3(6+2z)+5z=22x+18+11z=2x=8112z

    Put x,y into (1): solving gives z=2, then y=2, x=3
    Unique solution: (x,y,z) = (3,2,-2)

    Solve system of linear equations, using matrix method, in Exercises 7 to 14.

    Question 7 

    Solve by matrix method:

    {5x+2y=4,7x+3y=5.

    Matrix form: Ax=b with

    A=[5273],x=[xy],b=[45]

    detA=5372=1514=1
    A1=[3275] (since 1/detA=1).
    Hence x=A1b=[3275][45]=[23]

    Answer: x=2,  y=3.


    Question 8 

    {2xy=2,3x+4y=3.

    Matrix form: A=[2134], b=[23]
    detA=243(1)=8+3=11

    A1=111[4132]
    x=A1b=111[4132][23]=[5111211]

    Answer: x=511,  y=1211.


    Question 9 

    {4x3y=3,3x5y=7.

    Matrix form: A=[4335], b=[37]
    detA=4(5)3(3)=20+9=11

    A1=111[5334]=111[5334]x=A1b=111[5334][37]=[6111911]

    Answer: x=611,  y=1911.


    Question 10 

    {5x+2y=3,3x+2y=5.

    Matrix form: A=[5232], b=[35]
    Subtract second from first: 2x=2x=1Then 5(1)+2y=35+2y=32y=8y=4.

    (Or use inverse: detA=5232=106=4, A1=14[2235] giving same result.)

    Answer: x=1,  y=4.


    Question 11 

    Solve the system

    {2x+y+z=1,x2yz=32,2x+y3z=0.

    Solution (matrix / elimination).

    Augmented matrix:

    [2111121322130]

    To avoid fractions, multiply row2 by 2 first:

    R22R2:[211124232130]

    Now eliminate using R1:

    • R2R2R1
      [0,5,32]

    • R3R3R1
      [0,0,41]

    Matrix becomes

    [211105320041]

    Back-substitution:

    From row3: 4z=1z=14

    Row2: 5y3z=25y314=25y=114y=1120

    Row1: 2x+y+z=12x+(1120)+14=1
    Compute y+z=1120+520=620=310
    So 2x310=12x=1310x=1320

    Answer: x=1320,  y=1120,  z=14


    Question 12 

    Solve the system

    {xy+z=4,2x+y3z=0,3y5z=9.

    Solution (matrix / substitution).

    From the third equation:

    3y5z=9y=9+5z3

    Substitute y into the first equation:

    x9+5z3+z=4

    Multiply by 3:

    3x(9+5z)+3z=12    3x92z=12    3x2z=21.

    Sox=7+23z.(*)

    Now substitute x and y into the second equation 2x+y3z=0

    2(7+23z)+9+5z33z=0.

    Compute left side:

    14+43z+9+5z33z=14+4z+9+5z33z

    =14+9+9z33z=14+3+3z3z=17.

    That gives 17=0, a contradiction.

    Conclusion: The system is inconsistent; no solution.

    Answer: No solution (inconsistent system).


    Question 13 

    Solve the system

    {2x+3y+3z=5,x2y+z=4,3xy2z=3.

    Solution (matrix / elimination).

    Augmented matrix:

    [233512143123]

    Use row2 as pivot to eliminate others:

    • R1R12R2
      [0,  7,  113]

    • R3R33R2
      [0,  5,  515]

    So we have

    [12140711305515]

    (reordered so row2 is the original R2).

    Eliminate y from row3 using row2:

    • R37R35R2

    7R3=[0,35,35105],  5R2=[0,35,565]

    So R3[0,0,4040] ⇒ 40z=40z=1

    Back-substitute:

    Row2: 7y+z=137y1=137y=14y=2

    Row1 (original row2): x2y+z=4x41=4x=1

    Answer: x=1,  y=2,  z=1


    Question 14 (Plain text)

    Solve the system

    {xy+2z=7,3x+4y5z=5,2xy+3z=12.

    Solution (matrix / elimination).

    Augmented matrix:

    [1127345521312]

    Eliminate below first pivot R1:

    • R2R23R1:  [0,  7,  1126]

    • R3R32R1:  [0,  1,  12]

    Swap R2 and R3 to use the simpler pivot:

    [11270112071126]

    Eliminate y from row3:

    • R3R37R2:  [0,  0,  412]

    So 4z=12z=3

    Back-substitute:

    Row2: yz=2y3=2y=1

    Row1: xy+2z=7x1+6=7x=2

    Answer: x=2,  y=1,  z=3

     

  • Exercise-4.4, Class 12th, Maths, Part -2

    Question 14 :

    For the matrix A=[3211], find the numbers a and b such that

    A2+aA+bI=0.

    Solution:

    Given:

    A=[3211]

    We are to find a and b such that

    A2+aA+bI=0

    Step 1: Compute A2

    A2=[3211][3211]Perform the multiplication:

    A2=[3×3+2×13×2+2×11×3+1×11×2+1×1]=[9+26+23+12+1]=[11843]

    Step 2: Substitute in the equation

    A2+aA+bI=0

    That means:

    [11843]+a[3211]+b[1001]=[0000]

    Step 3: Combine all matrices

    [11+3a+b8+2a4+a3+a+b]=[0000]

    Step 4: Equate corresponding elements to zero

    From the first row, first column:

    11+3a+b=0(1)

    From the first row, second column:

    8+2a=0(2)

    From the second row, first column:

    4+a=0(3)

    From the second row, second column:

    3+a+b=0(4)

    Step 5: Solve for a and b

    From (3):

    a=4

    Substitute a=4:

    3+(4)+b=0    b=1

    So a=4 and b=1.

    Step 6: Verification

    Check equation (1):

    11+3(4)+1=1112+1=0

    True. Check (2):

    8+2(4)=88=0True.

    Final Answer:

    a=4,b=1

     

    Question 15 

    For the matrix A=[111123213], show that

    A36A2+5A+11I=O.

    Hence, find A1.

    Solution

    Step 1 — compute A2 and A3.

    A=[111123213]

    Compute A2=AA:

    A2=[42138147314]

    Compute A3=A2A:

    A3=[871232769321358]

    Step 2 — form the combination A36A2+5A+11I.

    Calculate termwise:

    A36A2+5A+11I=[871232769321358]6[42138147314]+5[111123213]+11[100010001]=[824+5+11712+5+016+5+023+18+5+02748+10+1169+8415+03242+10+013+185+05884+15+11]=[000000000]

    So the relation is verified:

    A36A2+5A+11I=O

    Step 3 — find A1.

    Starting from

    A36A2+5A+11I=O,

    multiply on the right by A1 (which is valid because A is invertible if we can find A1 from this equation):

    A26A+5I+11A1=O

    Rearrange to solve for A1:

    11A1=A2+6A5I,A1=111(6AA25I)

    Now substitute the matrices A and A2:

    6AA25I=6[111123213][42138147314]5[100010001]
    =[6456206106(3)0128518(14)012706(3)018145]=[345914531]

    Thus

    A1=111[345914531]

    You can write it explicitly as

    A1=[311411511911111411511311111]

    (One may verify AA1=I)

    Question 16 : If

    A=[211121112],

    verify that

    A36A2+9A4I=O,

    and hence find A1.

    Solution

    Step 1 — compute A2.

    A2=AA=[211121112][211121112]=[655565556](Each entry calculated: e.g. top-left =22+(1)(1)+11=4+1+1=6, top-middle =2(1)+(1)2+1(1)=221=5

    Step 2 — compute A3.

    A3=A2A=[222121212221212122].

    (For example, top-left =62+(5)(1)+51=12+5+5=22, top-middle =6(1)+(5)2+5(1)=6105=21

    Step 3 — form the combination A36A2+9A4I

    Compute termwise:

    A36A2+9A4I=[222121212221212122]6[655565556]+9[211121112]4[100010001]=[2236+18421+309+02130+9+021+309+02236+18421+309+02130+9+021+309+02236+184]=[000000000]

    Thus the identity is verified:

    A36A2+9A4I=O

    Step 4 — find A1.

    Start from the matrix polynomial

    A36A2+9A4I=O

    Right-multiply by A1 (valid since the relation will imply invertibility):

    A26A+9I4A1=O

    Rearrange to solve for A1:

    4A1=A26A+9IA1=14(A26A+9I)

    Now substitute the matrices A and A2:

    A26A+9I=[655565556]6[211121112]+9[100010001]Compute it:

    A26A+9I=[612+95+6+056+05+6+0612+95+6+056+05+6+0612+9]=[311131113]

    Therefore

    A1=14[311131113]=[341414143414141434]

    (You can verify AA1=I directly.)

    Final answer:

    A36A2+9A4I=O,A1=[341414143414141434]

     

    Question 17 :

    Let A be a nonsingular square matrix of order 3×3. Then adjA is equal to

    (A) A
    (B) A2
    (C) A3
    (D) 3A


    Solution:

    We know the formula for the determinant of the adjugate (adjoint) of a square matrix:

    adjA=An1where n is the order of the square matrix.

    Here, A is of order 3×3.
    So n=3

    adjA=A31=A2

    Final Answer:

    adjA=A2

    Hence, the correct option is (B) A2

    Question 18:

    If A is an invertible matrix of order 2, then det(A1) is equal to

    (A) det(A)
    (B) 1det(A)
    (C) 1
    (D) 0


    Solution:

    We know the fundamental property of determinants:

    det(A1)=1det(A)

    provided A is invertible (that is, det(A)0).

    Final Answer:

    det(A1)=1det(A)

    Hence, the correct option is (B) 1det(A).

  • Exercise4.4, Class 12th, Maths, Chapter 4, NCERT

    Exercise 4.4 

    Question 1:
    Find  adjfor

    A=(1234)Solution:
    For a 2×matrix

    A=(abcd) adjA=(dbca)

    So for

    A=(1234)

    adjA=(4231)

    (You can check  A(adjA)=(detA)I

    detA=1423=2, and indeed AadjA=(2))

    Question 2:
    Find adj⁡ 

    forA=(112235201)

    Below I show the cofactors, the adjoint, and a verification

    AadjA=(det⁡ A)I

    Minors and cofactors

    Compute the  2×2  minors and cofactors

    Aij=(1)i+jMij

    Cofactor matrix [Aij]=(31261521115)

    (Each entry is the cofactor of the corresponding element of

    A.)

    adj

    (adjugate = transpose of cofactor matrix)

    adjA=(31111251625)

    Determinant and verification

    det A=27

    Now verify    

    AadjA=(detA)I=27I

    Multiplying gives

    AadjA=(270002700027)=27I,

    so the adjoint is correct.

    ___________________

    Verify the identity for both matrices

    Show that A(adjA)=(adjA)A=AI

    Question 3:

    A=(2346)

    Solution – Compute the determinant:

    A=2(6)3(4)=12+12=0.

    Compute the Adj (classical adjoint). For a 2×matrix

    (abcd),

    adjA=(dbca)

    Thus,

    adjA=(6342)

    Multiply:

    A(adjA)=(2346)(6342)=(0000)

    Similarly

    (adjA)A=(0000)

    Since 

    A=0, we have

    AI=0I=(0000)

    Hence,

    A(adjA)=(adjA)A=AI,

    as required.

    Question 4:

    A=(112302103)

    Solution – Compute the determinant –

    A=11

    Compute the adjugate (transpose of cofactor matrix). The cofactors lead to

    adjA=(0321118013).

    Multiply:

    A(adjA)=(110001100011)=11I,

    and likewise

    (adjA)A=11I

    Thus for this matrix also

    A(adjA)=(adjA)A=AI

    Conclusion

    Both verifications hold:

    • For

      A=(2346)    A(adjA)=(adjA)A=0=AI
    • For

      A=(112302103)

    A(adjA)=(adjA)A=11I.

    Question 5:

    Find A1 if A=(2243).

    Formula for inverse of a 2×2 matrix

    A=(abcd)

    its inverse (if 

    A

    is

    A1=1adbc(dbca

    Compute determinant

    A=(2)(3)(2)(4)=6+8=14

    Since

    A

    , the inverse exists.

    Apply the formula

    A1=114(3242)

    Final Answer:

    A1=114(3242)

    Verification (optional):

    AA1=(2243)114(3242)=114(140014)=I

    ✔ Verified.

     

    Question 6:

    Find A1 if A=(1532)

    Formula for inverse

    For any 

    2×

    matrix

    A=(abcd),

    if 

    A=adbc

    , then

    A1=1A(dbca)

    Compute determinant

    A=(1)(2)(5)(3)=2+15=13

    A=13

    , so the inverse exists.

    Apply the formula

    A1=113(2531)

    Final Answer:

    A1=113(2531)

    Verification (optional):

    AA1=(1532)113(2531)=113(130013)=I

    ✔ Verified.

    Question 7:

    Find A1 if A=(123024005)

    Observation

    is an upper triangular matrix, and for triangular matrices,

    A=product of diagonal elements.

    Determinant

    A=1×2×5=10

    Since 

    A0Aexists.

    Use properties of triangular matrices

    For an upper triangular matrix, its inverse is also upper triangular.
    We find 

    A1=[aij]

     such that 

    AA1=I

    Let

    A1=(abc0de00f)

    Then

    AA1=(123024005)(abc0de00f)=(ab+2dc+2e+3f02d2e+4f005f)

    We want this to equal the identity

    I=(100010001)

    Compare entries

    From the bottom:

    f=1    f=15

    2d=1    d=12

    a=1

    Now use off-diagonal equations:

    e+4f=0    e=2f=25

    b+2d=0    b=2d=1

    c+2e+3f=0    c=2e3f

    Substitute 

    e=2and  f=15:

    c=2(25)3(15)=4535=15

    Write the inverse

    A1=(1115012250015)

    Verification (optional):

    AA1=(123024005)(1115012250015)=I

    ✔ Verified.

    Question 8:

    Find A1 for A=(100330521)

    Solution.

    is lower triangular, so Ais also lower triangular.
    Let

    A1=(a00bc0def)

    and solve

    AA1=I

    .Multiply  and A1: From the first row: a=1

    .From the second row:

    3a+3b=0,3c=1    b=1,  c=13

    From the third row:

    5a+2bd=0,2ce=0,f=1

    Substituting

    a=1,  b=1,  c=1

     gives

    5(1)+2(1)d=0d=3,213e=0e=23,f=1.

    Thus

    A1=(10011303231)

    (You can verify 

    AA1=

    by multiplication.)

    Question 9:

    find A

    forA=(213410721)

    Determinant

    Compute A∣ 

    (expand along the first row):

    A=2102114071+34172

    =2(1)1(4)+3(1)=24+3=3

    So

    A=3

     (non zero) — inverse exists.

    Cofactor / Adjugate

    Compute the matrix of cofactors (I show the cofactors 

    Cij):

    [Cij]=(141523113126)

    The adjugate (adj A) is the transpose of this:

    adjA=(153423121116)

    Inverse

    A1=1AadjA=13(153423121116)=(13531432334131132)

    Equivalently-

    A1=13(153423121116)

    Quick check (first-row × first-column)

    213+143+3(13)=2+433=1,

    so the product gives the identity as expected.

    Question 10.

    Find A1 for A=(112023324)

    Solution:

    Compute 

    A

    . Expanding along the first row,

    A=12324(1)0334+20232=1(24(3)(2))+1(04(3)3)+2(0(2)23)=1(86)+1(9)+2(6)=2+912=1

    So 

    A=1

     (nonzero) and the inverse exists.

    Compute cofactors (minors 

    Mij

     and cofactors

    Cij=(1)i+jMij

    M11=2324=2,C11=+2,M12=0334=9,C12=9,M13=0232=6,C13=6,M21=1224=0,C21=0,M22=1234=2,C22=2,M23=1132=1,C23=1,M31=1223=1,C31=1,M32=1203=3,C32=+3,M33=1102=2,C33=+2,

    Cofactor matrix

    C=[Cij

    is

    C=(296021132)

    Adjugate is transpose of cofactor matrix:

    adjA=CT=(201923612)

    Inverse:

    A1=1AadjA=1adjA=(201923612)

    Question 11.

    Find A1 for A=(1000cosαsinα0sinαcosα)

    Solution:

    Write 

    A=diag(1,M)

    where

    M=(cosαsinαsinαcosα)

    Compute 

    detM

    :

    detM=(cosα)(cosα)(sinα)(sinα)=(cos2α+sin2α)=1

    So 

    A=1detM=1, hence 

    is invertible.

    Now compute M1using the 2×

    formula:

    M1=1detM(cosαsinαsinαcosα)

    =1(cosαsinαsinαcosα)=(cosαsinαsinαcosα)=M

    Thus 

    M1=M

     Equivalently 

    M2=I2

    Therefore

    A1=diag(1,M1)=diag(1,M)=A

    Final answer

    A1=(1000cosαsinα0sinαcosα)=A

    (Verification:

    A2=diag(1,M2)=diag(1,I2)=I3, so indeed 

    A1=A

    Question 12:

    Let A=(3725) and B=(6879).

    Verify that (AB)1=B1A1.

    Let’s verify 

    (AB)1=B1A1

    Compute

    A

    and 

    B1

    (a)  A1 A=3(5)7(2)=1514=1

    A1=(5723)

    (b)  B1 B=6(9)8(7)=5456=2

    B1=12(9876)=(924723)

    Compute

    AB AB=(3725)(6879)=(36+7738+7926+5728+59)=(67874761)

    Compute

    (AB)1 AB=67(61)87(47)=40874089=2

    (AB)1=12(61874767)=(612872472672)

    Compute

    B1A1 B1A1=(924723)(5723)

    Multiply:

    B1A1=((92)(5)+4(2)(92)(7)+4(3)(72)(5)+(3)(2)(72)(7)+(3)(3))=(612872472672)

    Compare

    (AB)1=(612872472672)=B1A1

    Hence verified:

    (AB)1=B1A1

    Question 13 :

    If A=[3112], show that A25A+7I=O. Hence, find A1.

    Solution:

    Let’s solve step-by-step carefully and clearly.

    Given:

    A=[3112]

    We have to show that

    A25A+7I=O

    and then use this result to find A1

    Step 1: Compute A2

    A2=AA=[3112][3112]

    Multiply carefully:

    A2=[(3)(3)+(1)(1)(3)(1)+(1)(2)(1)(3)+(2)(1)(1)(1)+(2)(2)]=[913+2321+4]=[8553]

    So,

    A2=[8553]

    Step 2: Compute 5A and 7I

    5A=5[3112]=[155510]
    7I=7[1001]=[7007]

    Step 3: Compute A25A+7I

    A25A+7I=[8553][155510]+[7007]

    First subtract A25A:

    [815555(5)310]=[7007]

    Now add 7I:

    [7007]+[7007]=[0000]

    Hence proved:

    A25A+7I=O

    Step 4: Finding A1

    From the equation:

    A25A+7I=0

    Rearrange it as:

    A25A=7IMultiply both sides by A1(on the right):

    A5I=7A1

    So,A1=17(5IA)

    Step 5: Substitute values

    A1=17(5[1001][3112])
    A1=17[53010(1)52]=17[2113]

    Click Here For Question 14 to 18 of Exercise 4.4

     

  • Exercise-4.3, Class 12th, Maths, Chapter 4, NCERT

    1. Write minors and cofactors of the elements of the following determinants:

    (i) Δ=2403

    For a 2×2 determinant the minor Mij of element aij is the determinant left after deleting its row and column; for 2×2 deleting a row & column leaves a 1×1 number.

    Elements and their minors:

    • a11=2:  M11=3. Cofactor A11=(1)1+1M11=+3

    • a12=4:  M12=0. Cofactor A12=(1)1+2M12=0=0

    • a21=0:  M21=4. Cofactor A21=(1)2+1M21=4

    • a22=3:  M22=2. Cofactor A22=(1)2+2M22=+2

    (You can check: expansion along first row gives Δ=2A11+4A12=23+40=6, and direct determinant 2340=6)


    (ii) Δ=acbd

    Minors (each 1×1 entry):

    • M11=d,  A11=+d

    • M12=b,  A12=(1)1+2b=b

    • M21=c,  A21=(1)2+1c=c

    • M22=a,  A22=+a

    (So cofactors matrix is (dbca))


    2. Write minors and cofactors for the following 3×3 determinants:

    (i) I3=100010001

    We give minors Mij and cofactors Aij=(1)i+jMij

    Because I3 is diagonal, minors are determinants of the 2×2submatrices:

    Row 1:

    • M11=1001=1,  A11=+1

    • M12=0001=0,  A12=0=0

    • M13=0100=0,  A13=+0=0

    Row 2:

    • M21=0001=0,  A21=0=0

    • M22=1001=1,  A22=+1

    • M23=1000=0,  A23=0=0

    Row 3:

    • M31=0010=0,  A31=+0=0

    • M32=1000=0,  A32=0=0

    • M33=1001=1,  A33=+1

    (So adj I3 = transpose of cofactor matrix = identity again.)


    (ii) Δ=104351012

    Compute minors (each is a 2×2 determinant) and cofactors:

    Row 1:

    • M11=5112=5211=101=9,  A11=+9

    • M12=3102=3210=6,  A12=(1)1+26=6

    • M13=3501=3150=3,  A13=+3

    Row 2:

    • M21=0412=0241=4,  A21=(1)2+1(4)=+4

    • M22=1402=1240=2,  A22=+2

    • M23=1001=1100=1,  A23=(1)2+31=1

    Row 3:

    • M31=0451=0145=20,  A31=(1)3+1(20)=20
      (note sign: (1)4=+1, so A31=+(20)=20

    • M32=1431=1143=112=11,  A32=(1)3+2(11)=+11

    • M33=1035=1503=5,  A33=(1)3+35=+5

    (You can verify determinant by expansion: Δ=1A11+0A12+4A13=19+0+43=9+12=21

    Direct check yields same.)


    3. Using cofactors of elements of the second row, evaluate

    Δ=538201123

    We will expand along the second row: Δ=a21A21+a22A22+a23A23

    Compute the cofactors (minors first):

    • For a21=2: M21=3823=3382=916=7
      A21=(1)2+1M21=(7)=+7

    • For a22=0: M22=5813=5381=158=7
      A22=(1)2+2M22=+7

    • For a23=1: M23=5312=5231=103=7
      A23=(1)2+3M23=7

    Now expansion:

    Δ=2A21+0A22+1A23=27+0+1(7)=147=7

    (You may check by any other expansion; result is 7.)


    4. Using cofactors of elements of the third column, evaluate

    Δ=111xyzyzx

    We expand along third column: Δ=a13A13+a23A23+a33A33
    where a13=1,  a23=z,  a33=x

    Compute minors and cofactors:

    • A13=(1)1+3M13=(1)4M13=+M13
      M13=xyyz=xzy2

    • A23=(1)2+3M23=(1)5(M23)=M23 (Simpler: A23=M23)
      M23=11yz=1z1y=zy
      So A23=(zy)=yz

    • A33=(1)3+3M33=+M33
      M33=11xy=1y1x=yx
      So A33=yx

    Now expand:

    Δ=1(xzy2)+z(yz)+x(yx)

    Simplify term-by-term:

    Δ=xzy2+zyz2+xyx2.

    Group like terms:

    Δ=x2+(xz+zy+xy)(y2+z2)

    We can rewrite symmetric grouping if desired. But we can also notice a factorization — rearrange as

    Δ=(x2+y2+z2)+(xy+yz+zx).

    Thus

    Δ=(xy+yz+zx)(x2+y2+z2)

    (That is the simplest closed form. You may also write Δ=12[(xy)2+(yz)2+(zx)2] — indeed expanding that gives the same value. So Δ0 and equals zero exactly when x=y=z.)


    5. If Δ=[aij] is the 3×3 determinant and Aij are cofactors of aij, then which of the following equals Δ?

    Options:

    • (A) a11A31+a12A32+a13A33

    • (B) a11A11+a12A21+a13A31

    • (C) a21A11+a22A12+a23A13

    • (D) a11A11+a21A21+a31A31

    Solution / reasoning.

    Standard properties of cofactors / expansions:

    • Determinant expansion along the first row gives
      Δ=a11A11+a12A12+a13A13

    • Expansion along the first column gives
      Δ=a11A11+a21A21+a31A31

    Option (D) exactly matches the expansion along the first column, so it equals Δ.
    Options (A), (B), (C) are mixed-index combinations that do not in general equal Δ (they give either other identities or zero). For example, the sum of elements of one row multiplied by cofactors of a different row equals 0.

    Therefore the correct choice is

    (D)  a11A11+a21A21+a31A31

  • Exercise-4.2, Class 12th, Maths, Chapter 4, NCERT

    Question 1 (Area of triangles)

    Find area of the triangle whose vertices are:
    (i) (1,0),(6,0),(4,3)(ii) (2,7),(1,1),(10,8)

    (iii) (2,3),(3,2),(1,8).

    Method. Area =12x1(y2y3)+x2(y3y1)+x3(y1y2)

    (i) x1=1,y1=0;  x2=6,y2=0;  x3=4,y3=3

    S=121(03)+6(30)+4(00)

    =123+18+0=12(15)=152.

    (ii) (2,7),(1,1),(10,8)

    S=122(18)+1(87)+10(71)

    =1214+1+60=12(47)=472

    (iii) (2,3),(3,2),(1,8)

    S=122(2(8))+3((8)(3))+(1)((3)2)

    =122015+5=12(30)=15


    Question 2 (Collinearity)

    Show that A(a,b+c),  B(b,c+a),  C(c,a+b) are collinear.

    Solution. Points are collinear iff area of triangle ABC is zero. Compute

    Δ=ab+c1bc+a1ca+b1=a((c+a)(a+b))+b((a+b)(b+c))+c((b+c)(c+a))

    Simplify each bracket:

    a(cb)+b(ac)+c(ba)=acab+abbc+bcac=0

    Hence Δ=0 so A,B,C are collinear.


    Question 3 (Values of k for area = 4)

    Find k if area =4 for:
    (i) (k,0),(4,0),(0,2)(ii) (2,0),(0,4),(0,k).

    (i) Using determinant formula:

    Δ=k(02)+4(20)+0(00)=2k+8.

    Area =12Δ=4 ⁣2k+8 ⁣=8
    So 2k+8=8 or 2k+8=8 giving k=0 or k=8
    k=0 or 8

    (ii)

    Δ=2(4k)+0+  0=8+2k

    128+2k=48+2k=8. So 8+2k=8 or 8+2k=8
    gives k=8 or k=0
    k=0 or 8.


    Question 4 (Equation of a line using determinants)

    (i) line joining (1,2) and (3,6).(ii) line joining (3,1) and (9,3).

    Use determinant form for line through (x1,y1),(x2,y2)

    xy1x1y11x2y21=0.

    (i) xy1121361=0

    x(26)y(13)+1(66)=4x+2y=0y=2x.

    (ii) xy1311931=0

    x(13)y(39)+1(93)=2x+6y=0x3y=0.


    Question 5 (Find k from given area = 35)

    If area of triangle is 35 with vertices (2,6),(5,4),(k,4)

    The points (5,4) and (k,4) have same y-coordinate, so base =k5, height from (2,6) to line y=4 is 4(6)=10

    Area =12baseheight=12k510=5k5=35
    So k5=7k5=±7k=12 or k=2.

    k=12 or k=2 (So the correct choice from the options is the pair 12,2)

  • Exercise-4.1, Class 12th, Maths, Chapter 4, NCERT

    DETERMINANTS

    Question 1

    Evaluate 2451

    Solution.
    det=2(1)4(5)=2+20=18


    Question 2

    (i) cosθsinθsinθcosθ

    Solution 2 (i):

    det=cosθcosθ(sinθ)sinθ=cos2θ+sin2θ=1.

    Question 2 (ii):

    x2x+1x1x+1x+1Solution:

    We know that for a 2×2 determinant.

    Now compute:

    det=(x2x+1)(x+1)(x1)(x+1).

    Step 1: Expand both terms

    (x2x+1)(x+1)=x3+x2x2x+x+1=x3+1
    (x1)(x+1)=x21

    Step 2: Substitute back

    det=(x3+1)(x21)=x3x2+2

    Question 3

    If A=(1242), show 2A=4A

    Solution.
    For an n×n matrix scaling by scalar k multiplies the determinant by kn. Here n=2 and k=2. So 2A=22A=4A

    (Direct check: A=1224=28=6. Then 2A=det(2484)=2448=832=24=4(6)


    Question 4

    If A=(101012004), show 3A=27A

    Solution.
    A is 3×3. Scaling by 3 multiplies determinant by 33=27. Hence 3A=27A.

    (One can check: A is product of diagonal entries 114=4.

    3A has diagonal 3,3,12 so determinant 3312=108=274


    Question 5 — Evaluate the following determinants

    (i) 312001350

    Solution (5.i).
    Expand along second row (only one nonzero entry a23=1):

    Minor for a23 is 3135=3(5)(1)3=15+3=12

    Cofactor C23=(1)2+3(12)=1(12)=12. Then determinant = a23C23=(1)12=12


    (ii) 345112231

    Solution (5.ii).
    Compute by expansion / rule of Sarrus:

    det=31231(4)1221+51123.

    Evaluate minors:
    So det=37+45+51=21+20+5=46


    (iii) 012103230

    Solution (5.iii).
    Compute (expanding first row):

    det=0()11320+21023

    First minor: (1)0(3)(2)=06=6; the corresponding contribution is 1(6)=6
    Second minor: (1)30(2)=3; contribution 2(3)=6. Sum 66=0


    (iv) 212021350

    Solution (5.iv).
    Expand along first row:

    det=22150(1)0130+(2)0235

    Compute minors: first =20(1)(5)=05=52(5)=10
    second minor =00(1)3=3 ⇒ sign gives +13=+3
    third minor =0(5)23=6 ⇒ multiplied by 2 gives +12.
    Sum 10+3+12=5.


    Question 6

    If A=(112213549), find A

    Solution.
    Expand along first row:

    A=1134912359+(2)2154

    Compute minors: first = 1(9)(3)4=9+12=3
    second = 2(9)(3)5=18+15=3. With the minus sign yields 1(3)=+3.
    third minor = 2415=85=3, times 2 gives 6. Sum 3+36=0

    So A=0

    Question 7 (i):

    Find the value of x if 2451=2x46x


    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbcStep 1: Compute the determinant on the left-hand side (LHS)

    2451=(2)(1)(4)(5)=220=18Step 2: Compute the determinant on the right-hand side (RHS)

    2x46x=(2x)(x)(4)(6)=2x224

    Step 3: Set them equal

    18=2x224.

    Simplify:

    2x2=18+24=6.
    x2=3.
    x=±3

    Question 7 (ii):

    Find the value of x if 2345=x32x5

    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    2345=(2)(5)(3)(4)=1012=2

    Step 2: Compute RHS

    x32x5=(x)(5)(3)(2x)=5x6x=x

    Step 3: Equate LHS and RHS

    2=xx=2

     

    Question 8:

    If x218x=62186, then find x

    Options:
    (A) 6 (B) ±6 (C) 6 (D) 0


    Solution:

    For any 2×2 determinant
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    x218x=xx218=x236Step 2: Compute RHS

    62186=66218=3636=0

    Step 3: Equate LHS and RHS

    x236=0

    x2=36

    x=±6

    Final Answer:

    (B)  x=±6