Exercise-4.1, Class 12th, Maths, Chapter 4, NCERT

DETERMINANTS

Question 1

Evaluate 2451

Solution.
det=2(1)4(5)=2+20=18


Question 2

(i) cosθsinθsinθcosθ

Solution 2 (i):

det=cosθcosθ(sinθ)sinθ=cos2θ+sin2θ=1.

Question 2 (ii):

x2x+1x1x+1x+1Solution:

We know that for a 2×2 determinant.

Now compute:

det=(x2x+1)(x+1)(x1)(x+1).

Step 1: Expand both terms

(x2x+1)(x+1)=x3+x2x2x+x+1=x3+1
(x1)(x+1)=x21

Step 2: Substitute back

det=(x3+1)(x21)=x3x2+2

Question 3

If A=(1242), show 2A=4A

Solution.
For an n×n matrix scaling by scalar k multiplies the determinant by kn. Here n=2 and k=2. So 2A=22A=4A

(Direct check: A=1224=28=6. Then 2A=det(2484)=2448=832=24=4(6)


Question 4

If A=(101012004), show 3A=27A

Solution.
A is 3×3. Scaling by 3 multiplies determinant by 33=27. Hence 3A=27A.

(One can check: A is product of diagonal entries 114=4.

3A has diagonal 3,3,12 so determinant 3312=108=274


Question 5 — Evaluate the following determinants

(i) 312001350

Solution (5.i).
Expand along second row (only one nonzero entry a23=1):

Minor for a23 is 3135=3(5)(1)3=15+3=12

Cofactor C23=(1)2+3(12)=1(12)=12. Then determinant = a23C23=(1)12=12


(ii) 345112231

Solution (5.ii).
Compute by expansion / rule of Sarrus:

det=31231(4)1221+51123.

Evaluate minors:
So det=37+45+51=21+20+5=46


(iii) 012103230

Solution (5.iii).
Compute (expanding first row):

det=0()11320+21023

First minor: (1)0(3)(2)=06=6; the corresponding contribution is 1(6)=6
Second minor: (1)30(2)=3; contribution 2(3)=6. Sum 66=0


(iv) 212021350

Solution (5.iv).
Expand along first row:

det=22150(1)0130+(2)0235

Compute minors: first =20(1)(5)=05=52(5)=10
second minor =00(1)3=3 ⇒ sign gives +13=+3
third minor =0(5)23=6 ⇒ multiplied by 2 gives +12.
Sum 10+3+12=5.


Question 6

If A=(112213549), find A

Solution.
Expand along first row:

A=1134912359+(2)2154

Compute minors: first = 1(9)(3)4=9+12=3
second = 2(9)(3)5=18+15=3. With the minus sign yields 1(3)=+3.
third minor = 2415=85=3, times 2 gives 6. Sum 3+36=0

So A=0

Question 7 (i):

Find the value of x if 2451=2x46x


Solution:

For any 2×2 matrix
(abcd),

det=adbcStep 1: Compute the determinant on the left-hand side (LHS)

2451=(2)(1)(4)(5)=220=18Step 2: Compute the determinant on the right-hand side (RHS)

2x46x=(2x)(x)(4)(6)=2x224

Step 3: Set them equal

18=2x224.

Simplify:

2x2=18+24=6.
x2=3.
x=±3

Question 7 (ii):

Find the value of x if 2345=x32x5

Solution:

For any 2×2 matrix
(abcd),

det=adbc.

Step 1: Compute LHS

2345=(2)(5)(3)(4)=1012=2

Step 2: Compute RHS

x32x5=(x)(5)(3)(2x)=5x6x=x

Step 3: Equate LHS and RHS

2=xx=2

 

Question 8:

If x218x=62186, then find x

Options:
(A) 6 (B) ±6 (C) 6 (D) 0


Solution:

For any 2×2 determinant
(abcd),

det=adbc.

Step 1: Compute LHS

x218x=xx218=x236Step 2: Compute RHS

62186=66218=3636=0

Step 3: Equate LHS and RHS

x236=0

x2=36

x=±6

Final Answer:

(B)  x=±6

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.