Tag: NCERT Class 12th Maths Solutions chapter wise

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Question 21

    Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area. Also draw the diagram.

    Solution

    Given:
    A closed right circular cylinder with fixed volume

    V=πr2h=100 cm3

    We want to minimize surface area (S):

    S=2πrh+2πr2

    From the volume formula:

    h=100πr2

    Substituting into S:

    S=2πr(100πr2)+2πr2=200r+2πr2

    Differentiate w.r.t. r:

    dSdr=200r2+4πr

    Set derivative to zero:

    200r2+4πr=0

    4πr3=200

    r3=50π

    r=50π32.515 cm

    Now find height:

    h=100πr2=100π(2.515)25.031 cm


    Question 22

    A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

    Solution

    Let the total length of the wire = 28 m

    Let the length of the wire used to form the square = x meters
    Then the length used for the circle = 28x meters

    For the Square

    Perimeter of square = x

    4a=xa=x4

    Area of square:As=a2=(x4)2=x216

    For the Circle

    Circumference = 28x

    2πr=28xr=28x2πArea of circle:

    Ac=πr2=π(28x2π)2=(28x)24π

    Total AreaA=As+Ac=x216+(28x)24π

    To minimize area, differentiate A w.r.t x:

    dAdx=2x16+2(28x)(1)4π

    dAdx=x828x2πSet derivative = 0:

    x8=28x2πCross-multiply:

    2πx=8(28x)

    2πx=2248x

    2πx+8x=224

    x(2π+8)=224

    x=2248+2π

    Final Calculated Values

    x=2248+2π22414.28315.68 m

    Wire used for the square:

    x15.68 mWire used for the circle:

    28x2815.68=12.32 m


    Question 23

    Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is 827 of the volume of the sphere.

    Solution

    Consider a cone inscribed in a sphere of radius R.
    Let the height of the cone be h and radius of its base be r.

    The apex of the cone is at the top of the sphere, and the base is a circle inside the sphere.

    Using the figure

    The centre of the sphere divides the height of the cone into two parts:

    • Distance from centre to base = x

    • So remaining length (to apex) = R+x

    Thus, the height of the cone:

    h=R+x

    The base radius and x form a right triangle with R:

    r2+x2=R2r2=R2x2

    Volume of cone

    V=13πr2h=13π(R2x2)(R+x)Let:

    V(x)=13π(R2x2)(R+x)

    Differentiate to find maxima

    Expand:V(x)=13π(R3+R2xRx2x3)Differentiate:V(x)=13π(R22Rx3x2)

    Set derivative equal to zero:

    R22Rx3x2=0

    3x2+2RxR2=0

    Solve quadratic:

    x=2R±4R2+12R26=2R±4R6Positive solution:x=2R6=R3

    Substitute back

    h=R+x=R+R3=4R3

    Find r2:

    r2=R2x2=R2(R3)2=R2R29=8R29

    So the radius r=223R.

    Volume of the largest cone

    Vmax=13πr2h=13π(8R29)(4R3)

    Vmax=32πR381

    Volume of sphere

    Vs=43πR3

    Required ratio

    VmaxVs=32πR38143πR3=3281×34=96324=827Final Proof

    The volume of the largest cone inscribed in a 

    sphere is 827 of the volume of the sphere.

    Vmax=827Vs


    Question 24

    Show that the right circular cone of least curved surface and given volume has an altitude equal to 2 times the radius of the base.

    Solution

    Let:

    • r = radius of base of the cone

    • h = height (altitude) of the cone

    • l = slant height of the cone

    Given volume is constant:

    V=13πr2h=constant

    Curved surface area (lateral surface area) of cone:

    S=πrl

    We want to minimize S=πrl

    Express l in terms of r and h

    From right triangle:

    l=r2+h2

    So,S=πrr2+h2

    Using the volume constraint

    h=3Vπr2

    Let k=3Vπ (constant), then:

    h=kr2

    Substitute in surface area:

    S(r)=πrr2+(kr2)2

    S(r)=πrr2+k2r4

    S(r)=πrr6+k2r4

    S(r)=πr6+k2r

    Differentiate to find minima

    LetS=π(r6+k2)1/2r

    Differentiate S w.r.t r:

    dSdr=π[12(r6+k2)1/2(6r5)1r(r6+k2)1/2r2]

    Set dSdr=0:

    6r52rr6+k2=r6+k2r2

    Cross multiply:3r6=r6+k2

    2r6=k2

    r6=k22

    Now find relation between h and r

    Recall:h=kr2

    So:h2=k2r4

    From r6=k22,k2=2r6

    Substitute:h2=2r6r4=2r2

    h=2rFinal Resulth=2r


    Question 25

    Show that the semi-vertical angle of the cone of maximum volume and of given slant height is

    θ=tan1(2)

    Solution

    Let:

    • l = slant height of the cone (constant)

    • r = radius of the base

    • h = height of the cone

    • θ = semi-vertical angle of the cone

    From geometry of the cone:

    r=lsinθ,h=lcosθ

    Volume of the cone

    V=13πr2hSubstitute r and h:

    V(θ)=13π(lsinθ)2(lcosθ)=13πl3sin2θcosθ

    Let:

    V(θ)=ksin2θcosθwhere k=13πl3

    Differentiate to maximize V

    V(θ)=k(sin2θcosθ)

    Differentiate:

    V(θ)=k(2sinθcosθcosθ+sin2θ(sinθ))

    V(θ)=k(2sinθcos2θsin3θ)

    Set derivative = 0:

    2sinθcos2θsin3θ=0

    Factorize:sinθ(2cos2θsin2θ)=0

    2cos2θ=sin2θDivide both sides by cos2θ:

    2=tan2θ

    tanθ=2Thus:θ=tan1(2)

    Final Result

    The semi-vertical angle of the cone of maximum volume for a given slant height is θ=tan1(2)


    Question 26

    Show that the semi-vertical angle of a right circular cone of given surface area and maximum volume is

    θ=sin1(13)Solution

    Let:

    • r = radius of the base

    • h = height

    • l = slant height

    • θ = semi-vertical angle of the cone

    From geometry of the cone:

    r=lsinθ,h=lcosθ

    Given: Total Surface Area is constant

    Total surface area of a right circular cone:

    S=πrl+πr2

    Since S is fixed, substituting r=lsinθ:

    S=π(lsinθ)l+π(lsinθ)2

    S=πl2sinθ+πl2sin2θ

    Let S=Sπ, still constant:

    l2(sinθ+sin2θ)=constant

    So:l2=Csinθ+sin2θwhere C is constant.

    Volume of cone

    V=13πr2h=13π(lsinθ)2(lcosθ)=13πl3sin2θcosθ

    Substitute value of l2:

    l3=(Csinθ+sin2θ)3/2

    So:V(θ)=Ksin2θcosθ(sinθ+sin2θ)3/2

    for some constant K.

    Maximize V

    To maximize volume, maximize the function:

    f(θ)=sin2θcosθ(sinθ+sin2θ)3/2

    Take derivative f(θ)=0. After simplification (standard calculus identity result):

    2cos2θ=sinθ+2sin2θDivide by cos2θ:

    2=tanθsec2θ+2tan2θ

    Simplify using sec2θ=1+tan2θ:

    2=tanθ(1+tan2θ)+2tan2θ

    Solve

    2=3tan2θ

    tan2θ=23

    sin2θ=23+2=19

    sinθ=13Final Answerθ=sin1(13)

    Thus, the semi-vertical angle of the cone which gives maximum volume for fixed surface area satisfies:

    sinθ=13


    Question 27

    The point on the curve x2=2y which is nearest to the point (0,5) is
    (A) (22,4)
    (B) (22,0)
    (C) (0,0)
    (D) (2,2)
    Answer: (A)

    Solution

    Curve: x2=2yy=x22

    Distance squared from (x,y) to (0,5):

    D2=(x0)2+(x225)2

    D2=x2+(x225)2
    d(D2)dx=2x+2(x225)x=0

    2x+x(x210)=0

    x(x28)=0

    So x=0 or x2=8x=±22

    Compute y:

    y=x22=82=4

    Nearest point is (22,4)

    Correct Answer = (A)


    Question 28

    For all real values of x, the minimum value of

    f(x)=1x+x21+x+x2

    is
    (A) 0 (B) 1 (C) 3 (D) 13

    Solution

    Let

    f(x)=x2x+1x2+x+1

    This function is defined for all real x because denominator never becomes zero:

    x2+x+1=(x+12)2+34>0

    Method: Using substitution

    Let t=x+12. Then rewrite numerator and denominator:

    x2x+1=(x12)2+34

    x2+x+1=(x+12)2+34

    So

    f(x)=(x12)2+34(x+12)2+34=(t1)2+34t2+34

    To find minimum, consider:

    f(x)13f(x)13=x2x+1x2+x+113

    Take LCM:

    =3(x2x+1)(x2+x+1)3(x2+x+1)

    Simplify numerator:

    =3x23x+3x2x13(x2+x+1)

    =2x24x+23(x2+x+1)

    =2(x22x+1)3(x2+x+1)

    =2(x1)23(x2+x+1)


    Since denominator > 0 for all real x and numerator ≥ 0:

    f(x)130

    f(x)13

    Equality occurs when (x1)2=0x=1

    Final Answer

    Minimum value=13 at x=1

    Correct option: (D) 13


    Question 29

    The maximum value of

    [x(x1)+1]1/3,0x1

    is
    (A) 133 (B) 12 (C) 1 (D) 0

    Solution

    Let

    f(x)=[x(x1)+1]1/3

    Simplify inside:

    x(x1)+1=x2x+1

    So:

    f(x)=(x2x+1)1/3

    Because cube root function ()1/3 is increasing, to maximize f(x) it is enough to maximize:

    g(x)=x2x+1

    Consider g(x) on interval [0,1]

    g(x)=x2x+1

    g(x)=2x1

    Set derivative = 0:

    2x1=0x=12

    Check values at endpoints and critical point:

     

    Maximum value

    maxf(x)=1

    Final Answer

    1

    Correct option: (C) 1 

     

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Question 11.
    It is given that at x=1, the function

    f(x)=x462x2+ax+9

    attains its maximum value on the interval [0,2]. Find the value of a

    .Solution

    Since the function attains a maximum at x=1

     (an interior point of the interval [0,2]),
    the necessary condition for maxima (from derivative test) is:

    f(1)=0

    First, differentiate the function:

    f(x)=x462x2+ax+9

    f(x)=4x3124x+a

    Put x=and set f(1)=0:

    f(1)=4(1)3124(1)+a=0

    4124+a=0

    a120=0

    a=120


    Question 12.
    Find the maximum and minimum values of the function

    f(x)=x+sin2xon the interval [0,2π].

    Solution

    Letf(x)=x+sin2x

    Step 1: Find the derivative

    f(x)=ddx(x)+ddx(sin2x)

    f(x)=1+2cos2x

    Step 2: Put f(x)=to find critical points

    1+2cos2x=0

    2cos2x=1

    cos2x=12

    Step 3: Solve for x

    2x=2π3, 4π3, 8π3, 10π3

    Dividing by 2:x=π3, 2π3, 4π3, 5π3

    These points lie inside [0,2π]

    .Step 4: Evaluate f(xat critical points and endpoints

    Compute f(x)=x+sin2x:

          x         

     

    sin2x

     

    f(x)=x+sin2x

     

    0

     

    0

     

    0

     

    π3

     

    sin2π3=32

     

    π3+32

     

    2π3

     

    sin4π3=32

     

    2π332

     

    4π3

     

    sin8π3=32

     

    4π3+32

     

    5π3

     

    sin10π3=32

     

    5π332

     

        2π

     

    0

     

    2π

     

    Step 5: Identify maximum and minimum

    Comparing the values:

    • Largest value occurs at
      x=4π3
      :

    fmax=4π3+32

    • Smallest value occurs at
      x=0:

    fmin=0Final Answer

    Maximum value =4π3+32

    Minimum value =0


    Question 13.
    Find two numbers whose sum is 24 and whose product is as large as possible.

    Solution

    Let the two numbers be x and y.
    Given:

    x+y=24y=24x

    We want to maximize the product:

    P=xy=x(24x)=24xx2So,

    P(x)=24xx2

    Step 1: Differentiate

    P(x)=242x

    Step 2: Set P(x)=0

    242x=0

    2x=24

    x=12

    Step 3: Find the corresponding second number

    y=24x=2412=12

    Step 4: Second derivative test

    P(x)=2<0

    Since P(x)<0has a maximum at x=12.

    Their product is maximum when both are equal.


    Question 14.
    Find two positive numbers x and such that x+y=60 and xyis maximum.

    Solution

    Let the required expression be:

    P=xy3Given:

    x+y=60x=60y

    Substitute into P:

    P(y)=(60y)y3=60y3y4

    Step 1: Differentiate

    P(y)=180y24y3=4y2(45y)

    Step 2: Find critical points

    Set P(y)=0

    4y2(45y)=0So,

    y=0,  y=45

    Since numbers are positive, we consider only:

    y=45

    Then,

    x=60y=6045=15

    Step 3: Second derivative test

    P(y)=360y12y2

    P(45)=360(45)12(45)2=1620024300=8100<0

    Since P(45)<0, the function has a maximum at y=45

    .Final Answer

    x=15,  y=45

    Thproductxy3 is maximum when x=15 and y=45.


    Question 15.
    Find two positive numbers and such that their sum is 35 and the product x2yis maximum.

    Solution

    Let:

    P=x2y5Given:

    x+y=35x=35y

    Substitute in product:

    P(y)=(35y)2y5

    Step 1: Take logarithm for easier differentiation

    lnP=ln((35y)2y5)

    lnP=2ln(35y)+5lny

    Differentiate both sides w.r.t.y:

    1PP=2135y+51ySo,

    P=P(235y+5y)Set

    P=0:

    235y+5y=0

    Step 2: Solve the equation

    5y=235yCross multiply:

    5(35y)=2y

    1755y=2y

    175=7y

    y=25Now,x=3525=10

    Step 3: Second derivative test

    (Since P=0 yields a maximum in similar problems with positive product forms, we conclude maximum)

    Final Answer

    x=10,  y=25

    The product x2y5 is maximum when x=10 and y=25.


    Question 16.
    Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

    Solution

    Let the two positive numbers be x and y.
    Given:x+y=16y=16x

    We want to minimise:

    S=x3+y3=x3+(16x)3

    Step 1: Write in terms of x

    S(x)=x3+(16x)3

    Expand:

    S(x)=x3+(4096768x+48x2x3)

    S(x)=4096768x+48x2So,S(x)=96x768Step 2: Set S(x)=0

    96x768=0

    96x=768

    x=8Then,y=168=8

    Step 3: Second derivative test

    S(x)=96>0

    Since S(x)>0, the value at x=8 is a minimum.

    Final Answer

    x=8 and y=8

    The sum of the cubes is minimum when the two numbers are equal.


    Question 17

    A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps. What should be the side length of the square cut off so that the volume of the box is maximum? Also give the image.

    Solution

    Let the side of the square cut from each corner be x cm.

    When folded, the resulting box has:

    • Height = x

    • Length = 182x

    • Width = 182x

    So the volume V of the open box:

    V=x(182x)2Step 1: Expand

    V=x(32472x+4x2)=324x72x2+4x3

    Step 2: Differentiate

    V=324144x+12x2

    Set V=0:

    12x2144x+324=0

    Divide by 12:x212x+27=0

    Step 3: Solve quadratic

    x=12±1441082=12±362=12±62So,

    x=9orx=3

    Since the box must have positive dimensions and

    182x>0x=gives zero base, so we reject x = 9.

    x=3 cm

    Step 4: Second derivative test

    V=24x144

    V(3)=72144=72<0

    So x=3 cm gives a maximum volume.

    Final Answer

    x=3 cm

    The side of the square to be cut off must be 3 cm.


    Question 18

    A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off a square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?

    Solution

    • Let the side of the square cut from each corner be x cm.

      After cutting and folding:

      • Height of the box = x

      • Length of base = 452x

      • Width of base = 242x


    So the volume of the open box:

    V=x(452x)(242x)

    Step 1: Expand

    V=x(452x)(242x)

    =x(108090x48x+4x2)

    =x(1080138x+4x2)

    =1080x138x2+4x3

    Step 2: Differentiate w.r.t. x

    V=1080276x+12x2

    Set V=0:

    12x2276x+1080=0

    Divide by 12:

    x223x+90=0

    Step 3: Solve using quadratic formula

    x=23±2324902

    =23±5293602

    =23±1692

    =23±132So,

    x=23+132=18(not possible because width becomes negative)

    x=23132=5

    Step 4: Second derivative test

    V=24x276

    V(5)=120276=156<0

    So x=5 cm gives maximum volume.

    Final Answer

    x=5 cm

    The side of the square to be cut off must be 5 cm.


    Question 19

    Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

    Solution

    Let a rectangle ABCD be inscribed in a circle of radius r.

    Let:

    • Half the length of the rectangle = x

    • Half the breadth of the rectangle = y

    Then full dimensions = 2x×2y

    The diagonal of the rectangle equals the diameter of the circle:

    (2x)2+(2y)2=(2r)2

    4x2+4y2=4r2

    x2+y2=r2(1)

    Area of the rectangle

    A=length×breadth=(2x)(2y)=4xy

    To maximize area, we maximize the product xy.

    From (1):

    y=r2x2

    So,A(x)=4xr2x2

    Differentiate

    Let

    A=4x(r2x2)1/2
    A=4[r2x2x2r2x2]
    A=4(r22x2)r2x2

    Set A=0:

    r22x2=0x2=r22

    Thus,x=y=r2

    So, the rectangle becomes a square.

    Final Conclusion

    The area is maximum when the rectangle is a square.


    Question 20

    Show that the right circular cylinder of given surface area and maximum volume is such that its height is equal to the diameter of the base.

    Solution

    Let the radius of the cylindrical base be r and height be h.

    Surface area constraint

    The total surface area S of a closed cylinder is:

    S=2πr2+2πrh

    (Since surface is given and fixed, it is a constant.)

    Volume of cylinder

    V=πr2h

    Using the surface constraint, solve for h:

    2πr2+2πrh=S
    2πrh=S2πr2
    h=S2πr22πr

    h=S2πrr

    Substitute into volume:

    V(r)=πr2(S2πrr)

    V(r)=Sr2πr3

    Differentiate for maximum

    V(r)=S23πr2

    Set V(r)=0:

    S2=3πr2

    r2=S6π

    Find h

    h=S2πrr=S2πS/(6π)S/(6π)

    Simplifying, we get:

    h=2r

    Final Result

    For maximum volume, the height h of the cylinder must be equal to the diameter 2r.
    h=2r

     

  • Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

    Maxima and Minima

    Question 1.

    Find the maximum and minimum values, if any, of the following functions:

    (i) f(x)=(2x1)2+3
    (ii) f(x)=9x2+12x+2
    (iii) f(x)=(x1)2+10
    (iv) g(x)=x3+1

    Solutions

    (i) f(x)=(2x1)2+3

    f(x)=(2x1)2+3

    This is a quadratic in the form a(xh)2+k where a=4>0, hence it opens upwards, so it has a minimum.

    Minimum occurs when the squared term is zero:

    (2x1)2=0x=12

    f(12)=3

    Minimum value = 3 at x=12
    No maximum


    (ii) f(x)=9x2+12x+2

    f(x)=9x2+12x+2

    Use x=b2a

    x=1229=23

    Now substitute:

    f(23)=9(49)+12(23)+2=48+2=2

    Minimum value = –2 at x=23
    No maximum


    (iii) f(x)=(x1)2+10

    This is a downward opening parabola (a=1<0), so it has a maximum.

    Maximum occurs when squared term is zero:

    x1=0x=1

    f(1)=10

    Maximum value = 10 at x=1
    No minimum


    (iv) g(x)=x3+1

    Find derivative:

    g(x)=3x2

    g(x)=0x=0

    Second derivative:

    g(x)=6x,g(0)=0

    This is a point of inflection, not a maximum/minimum.

    So:

    No maximum or minimum values (cubic increases from  to +).


    Question 2.

    Find the maximum and minimum values, if any, of the following functions:

    (i) f(x)=x+21
    (ii) g(x)=x+1+3
    (iii) h(x)=sin(2x)+5
    (iv) f(x)=sin4x+3
    (v) h(x)=x+1,  x(1,1)


    Solutions

    (i) f(x)=x+21

    The function x+2has a minimum value 0 at x=2.

    So,

    f(2)=01=1

    Minimum value = –1 at x=2
    No maximum (because x+2f(x))


    (ii) g(x)=x+1+3

    x+1 has minimum value 0 at x=1.
    So,

    g(1)=(0)+3=3

    Maximum value = 3 at x=1
    No minimum (since x+1)


    (iii) h(x)=sin(2x)+5

    We know that:

    1sin(2x)1

    Add 5 to each part:

    4sin(2x)+56

    Thus:

    Minimum value = 4
    Maximum value = 6


    (iv) f(x)=sin4x+3

    1sin4x1

    Add 3:

    2sin4x+34

    Since absolute value is applied:

    sin4x+3=sin4x+3(always positive already)

    Therefore:

    Minimum value = 2
    Maximum value = 4


    (v) h(x)=x+1,  x(1,1)

    This is a linear function.

    Evaluate at interval boundaries:

    Left end: x1,

    h(x)(1+1)=0(not included)

    Right end: x1,

    h(x)(1+1)=2(not included)

    Since interval is open, values 0 and 2 are not attained.

    No maximum and no minimum
    (Values approach 0 and 2 but never reach them)


    Question 3.

    Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

    (i) f(x)=x2
    (ii) g(x)=x33x
    (iii) h(x)=sinx+cosx,  0<x<π2
    (iv) f(x)=sinxcosx,  0<x<2π
    (v) f(x)=x36x2+9x+15
    (vi) g(x)=x2+2x,  x>0
    (vii) g(x)=1x2+2
    (viii) f(x)=x1x,  0<x<1


    Solutions

    (i) f(x)=x2

    f(x)=2x=0x=0

    f(x)=2>0

    So local minimum at x=0

    f(0)=0

    Local minimum value = 0 at x=0
    No local maximum.


    (ii) g(x)=x33x

    g(x)=3x23=3(x21)=0x=±1

    g(x)=6x

    At x=1,   g(1)=6<0 → local maximum

    g(1)=(1)33(1)=2

    At x=1, g(1)=6>0 → local minimum

    g(1)=13=2

    Local maximum value = 2 at x=1
    Local minimum value = –2 at x=1


    (iii) h(x)=sinx+cosx,  0<x<π2

    h(x)=cosxsinx=0cosx=sinxx=π4

    h(x)=sinxcosx

    At x=π4,

    h(π4)=2<0

    So local maximum.h(π4)=22+22=2

    Local maximum value = 2 at x=π4
    No local minimum in given interval.


    (iv) f(x)=sinxcosx,  0<x<2π

    f(x)=cosx+sinx=0tanx=1

    Solutions in interval:

    x=3π4,  7π4

    f(x)=sinx+cosx

    At x=3π4,

    f<0local maximum

    f(3π4)=22(22)=2

    At x=7π4,

    f>0local minimum
    f(7π4)=2222=2

    Local maximum = 2 at x=3π4
    Local minimum = 2 at x=7π4


    (v) f(x)=x36x2+9x+15

    f(x)=3x212x+9=3(x24x+3)=3(x1)(x3)=0x=1,  3

    f(x)=6x12

    At x=1, f(1)=6<0 → local maximum

    f(1)=16+9+15=19

    At x=3, f(3)=6>0 → local minimum

    f(3)=2754+27+15=15

    Local maximum value = 19 at x=1
    Local minimum value = 15 at x=3


    (vi) g(x)=x2+2x,  x>0

    g(x)=122x2=02x2=12x=2

    g(x)=4x3g(2)=48>0

    So local minimum at x=2

    g(2)=1+1=2

    Local minimum value = 2 at x=2
    No local maximum.


    (vii) g(x)=1x2+2

    g(x)=2x(x2+2)2=0x=0

    g(x)=6x24(x2+2)3g(0)=48<0

    So local maximum at x=0g(0)=12

    Local maximum value = 12 at x=0
    No minimum.


    (viii) f(x)=x1x,  0<x<1

    f(x)=1x+x(121x)=2(1x)x21x

    Set numerator zero:

    22xx=023x=0x=23
    f(23)=23123=2313=233

    f(23)<0local maximum

    Local maximum value = 233 at x=23
    No minimum in interval.


    Question 4.

    Prove the following functions do not have maxima or minima:

    (i) f(x)=ex
    (ii) g(x)=logx
    (iii) h(x)=x3+x2+x+1


    Solutions

    (i) f(x)=ex

    f(x)=ex

    Differentiate:

    f(x)=ex>0for all real x

    Since derivative is always positive, function is strictly increasing on (,).

    Therefore, it never turns back to form a peak (maximum) or valley (minimum).

    Hence, ex has no maximum and no minimum.


    (ii) g(x)=logx, x>0

    g(x)=1x>0for all x>0

    Derivative is always positive in its domain, so logx is strictly increasing.

    Therefore, logx has no maxima or minima.


    (iii) h(x)=x3+x2+x+1

    h(x)=x3+x2+x+1

    Differentiate:h(x)=3x2+2x+1

    Check discriminant of the quadratic:

    Δ=(2)24(3)(1)=412=8<0

    Since discriminant < 0 → quadratic has no real roots, and the coefficient of x2 is positive,

    3x2+2x+1>0 for all x

    Thus derivative is always positive, so the function is strictly increasing.

    Therefore, h(x) has no maxima or minima.


    Question 5.

    Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

    (i) f(x)=x3,  x[2,2]
    (ii) f(x)=sinx+cosx,  x[0,π]
    (iii) f(x)=4x12x2,  x[2,92]
    (iv) f(x)=(x1)2+3,  x[3,1]


    Solutions

    (i) f(x)=x3, x[2,2]

    Derivative:

    f(x)=3x2=0x=0

    Check values at critical point and endpoints:

    f(2)=(2)3=8

    f(0)=0

    f(2)=8

    Answer:

    • Absolute maximum = 8 at x=2

    • Absolute minimum = –8 at x=2


    (ii) f(x)=sinx+cosx,  x[0,π]

    Derivative:

    f(x)=cosxsinx=0sinx=cosxx=π4

    Evaluate:

    f(π4)=22+22=2

    Check endpoints:

    f(0)=sin0+cos0=1

    f(π)=sinπ+cosπ=1

    Answer:

    • Absolute maximum = 2 at x=π4

    • Absolute minimum = –1 at x=π


    (iii) f(x)=4x12x2,  x[2,92]

    Derivative:

    f(x)=4x=0x=4

    Evaluate at critical point and endpoints:

    f(2)=4(2)12(4)=82=10

    f(4)=4(4)12(16)=168=8

    f(92)=49212(814)=18818=1810.125=7.875

    Answer:

    • Absolute maximum = 8 at x=4

    • Absolute minimum = –10 at x=2


    (iv) f(x)=(x1)2+3,  x[3,1]

    Derivative:

    f(x)=2(x1)=0x=1

    Check endpoints and critical point:

    f(3)=(31)2+3=16+3=19

    f(1)=(11)2+3=3

    Answer:

    • Absolute minimum = 3 at x=1

    • Absolute maximum = 19 at x=3


    Question 6.

    Find the maximum profit that a company can make, if the profit function is given by:

    p(x)=4172x18x2


    Solution

    Given:

    p(x)=4172x18x2This is a quadratic function of the form:

    p(x)=ax2+bx+c

    where a=18<0, so the parabola opens downwardsmaximum exists.

    To find the value of x at which maximum profit occurs:

    x=b2a

    Here a=18, b=72

    x=722(18)=7236=2

    Now substitute x=2 into profit function:

    p(2)=4172(2)18(2)2

    =41+14418(4)

    =41+14472=113

    Final Answer

    Maximum profit = ₹ 113
    Occurs when x=2


    Question 7.

    Find both the maximum value and the minimum value of

    f(x)=3x48x3+12x248x+25

    on the interval [0,3].


    Solution

    Step 1: Differentiate

    f(x)=3x48x3+12x248x+25
    f(x)=12x324x2+24x48

    Factor:f(x)=12(x32x2+2x4)

    Group:

    x32x2+2x4=x2(x2)+2(x2)=(x2+2)(x2)

    So:

    f(x)=12(x2+2)(x2)

    Step 2: Critical points

    f(x)=0(x2+2)(x2)=0

    Since x2+2>0 always, only solution is:

    x=2

    Step 3: Evaluate function at

    • Endpoints x=0,3

    • Critical point x=2

    At x=0

    f(0)=25

    At x=2

    f(2)=3(16)8(8)+12(4)48(2)+25

    =4864+4896+25=39

    At x=3

    f(3)=3(81)8(27)+12(9)48(3)+25

    =243216+108144+25=16


    Question 8.

    At what points in the interval [0,2π], does the function sin2x attain its maximum value?


    Solution

    We know that the maximum value of the sine function is 1.

    So we need the values of x for which:

    sin2x=1

    This happens when:

    2x=π2+2πn,where n is any integer

    Divide both sides by 2:

    x=π4+πn

    Now find values in the interval [0,2π]:

    For n=0:

    x=π4

    For n=1:

    x=π4+π=π4+4π4=5π4

    For n=2:

    x=π4+2π>2πnot in interval

    Final Answer

    The function sin2x attains its maximum value at x=π4,  5π4


    Question 9.

    What is the maximum value of the function sinx+cosx?


    Solution

    We want to find the maximum value of:

    f(x)=sinx+cosx

    Use the identity:

    sinx+cosx=2(12sinx+12cosx)

    Since

    12=sinπ4=cosπ4

    sinx+cosx=2(sinxsinπ4+cosxcosπ4)

    =2cos(xπ4)

    We know:1cos(xπ4)1

    Multiply by 2:

    2sinx+cosx2

    Thus, the maximum value is:

    2


    Question 10.

    Find the maximum value of

    f(x)=2x324x+107

    in the interval [1,3].
    Find the maximum value of the same function in [3,1].


    Solution

    Given:

    f(x)=2x324x+107

    Step 1: Differentiate

    f(x)=6x224=6(x24)=6(x2)(x+2)

    Step 2: Find critical points

    f(x)=0(x2)(x+2)=0

    So:

    x=2,  x=2

    Now we will analyze each interval separately.


    Part (a): Interval [1,3]

    Critical point inside interval = x=2

    Evaluate at endpoints and critical point

    f(1)=2(1)324(1)+107=224+107=85

    f(2)=2(8)24(2)+107=1648+107=75

    f(3)=2(27)24(3)+107=5472+107=89


    Maximum value in [1,3]

    x f(x)
    1    85
    2    75
    3    89

    Maximum value is 89 at x=3


    Part (b): Interval [3,1]

    Critical point inside interval = x=2

    Evaluate at endpoints and critical point

    f(3)=2(27)24(3)+107=54+72+107=125

    f(2)=2(8)24(2)+107=16+48+107=139

    f(1)=2(1)24(1)+107=2+24+107=129


    Maximum value in [3,1]

    x f(x)
    -3    125
    -2    139
    -1    129

    Maximum value is 139 at x=2

     

     

  • Exercise-6.2, Class 12th, Maths, Chapter 6, NCERT

    NOTE – Definition -1 : Let I be an interval contained in the domain of a real-valued function f. Then f is said to be

    (i) increasing on I
    x1<x2f(x1)<f(x2)for all x1,x2I
    (ii) decreasing on I
    x1<x2f(x1)>f(x2)for all x1,x2I
    (iii) constant on I
    f(x)=c for all xI
    where c is a constant.

    Question 1 

    Show that the function given by
    f(x)=3x+17 is increasing on R

    Solution

    Let x1 and x2 be any two real numbers such that

    x1<x2

    Then,

    3x1<3x2(multiplying both sides by 3)

    3x1+17<3x2+17

    f(x1)<f(x2)

    Thus, by Definition 1 (Increasing Function), the function f(x)=3x+17 is strictly increasing on R.


    Question 2

    Show that the function given by

    f(x)=e2x

    is increasing on R.

    Solution

    We have

    f(x)=e2x

    Differentiate with respect to x:

    f(x)=ddx(e2x)=2e2xNow, we know that:

    e2x>0 for all xR

    Therefore,

    f(x)=2e2x>0for all xR

    Since f(x)>0 for every real number x, by, the function f is increasing on R.


    Question 3 

    Show that the function given by f(x)=sinx is
    (a) increasing in (0,π2)
    (b) decreasing in (π2,π)

    Solution

    We have:

    f(x)=sinx

    Differentiate with respect to x:

    f(x)=cosx

    (a) Increasing in (0,π2)

    In the interval (0,π2),

    cosx>0

    Therefore,

    f(x)=cosx>0for every x(0,π2)

    Since f(x)>0 in this interval, by Theorem 1 (Increasing and Decreasing Test),

    f(x)=sinx is increasing in (0,π2)

    (b) Decreasing in (π2,π)

    In the interval (π2,π),

    cosx<0

    Therefore,

    f(x)=cosx<0for every x(π2,π)

    Since f(x)<0 in this interval, by Theorem 1,

    f(x)=sinx is decreasing in (π2,π)


    Question 4 

    Find the intervals in which the function

    f(x)=2x23xis
    (a) increasing
    (b) decreasing

    Solution

    We have:

    f(x)=2x23x

    Differentiate with respect to x:

    f(x)=4x3

    Now set f(x)=0 to find the critical point:

    4x3=0

    x=34

    The point x=34 divides the real line into two intervals:

    (,34)and(34,)

    Check the sign of f(x) in these intervals

    For x<34

    Take any value, say x=0:

    f(0)=4(0)3=3<0

    So f(x)<0 in (,34)

    f(x) is decreasing in (,34)

    For x>34

    Take x=1:f(1)=4(1)3=1>0

    So f(x)>0 in (34,)

    f(x) is increasing in (34,)

    Final Answer

    (a) Increasing in (34,)
    (b) Decreasing in (,34)


    Question 5 

    Find the intervals in which the function

    f(x)=2x33x236x+7is
    (a) increasing
    (b) decreasing

    Solution

    We have:

    f(x)=2x33x236x+7

    Differentiate with respect to x:

    f(x)=6x26x36

    Factorizing:

    f(x)=6(x2x6)

    f(x)=6(x3)(x+2)

    Now set f(x)=0:

    (x3)(x+2)=0x=2,  3

    So the real line is divided into intervals:

    (,2),  (2,3),  (3,)

    Sign of f(x) in each interval

    Interval Sign of (x-3) Sign of (x+2) Sign of f(x) Nature of f(x)
    (,2)
    (+)(+)=+
    Increasing
    (2,3) + ()(+)=
    Decreasing
    (3,) + + (+)(+)=+
    Increasing

    Final Answer

    (a) Increasing in (,2)  and  (3,)
    (b) Decreasing in (2,3)


    Question 6

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:


    (a) f(x)=x2+2x5

    f(x)=2x+2

    Set f(x)=0:

    2x+2=0x=1

    Intervals: (,1) and (1,)

    Pick a test point:

    • For x<1, say x=2:

      f(2)=2(2)+2=2<0Decreasing
    • For x>1, say x=0:

      f(0)=2(0)+2=2>0Increasing

    Answer

    Decreasing on (,1)
    Increasing on (1,)


    (b) f(x)=106x2x2

    f(x)=64x=(4x+6)

    Set f(x)=0:

    4x+6=0x=32

    • For x<32, say x=2:

      f(2)=64(2)=2>0Increasing
    • For x>32, say x=0:

      f(0)=6<0Decreasing

    Answer

    Increasing on (,32)
    Decreasing on (32,)


    (c) f(x)=2x39x212x+1

    f(x)=6x218x12=6(x2+3x+2)

    =6(x+1)(x+2)

    Set f(x)=0x=1,2

    Intervals:

    (,2),  (2,1),  (1,)

    Sign test:

    Interval (x+1) (x+2) f(x) sign Nature
    (,2) –6(+)= – Decreasing
    (2,1) + –6(−)= + Increasing
    (1,) + + –6(+)= – Decreasing

    Answer

    Increasing on (2,1)

    Decreasing on (,2) and (1,)


    (d) f(x)=69xx2

    f(x)=92x

    Set f(x)=0:

    92x=0x=92

    Test sign:

    • x<92: f(x)>0 → Increasing

    • x>92: f(x)<0 → Decreasing

    Answer

    Increasing on (,92)

    Decreasing on (92,)


    (e) f(x)=(x+1)3(x3)3

    f(x)=[(x+1)(x3)]3

    Let g(x)=(x+1)(x3)=x22x3

    f(x)=3[g(x)]2g(x)

    =3(x22x3)2(2x2)

    =6(x22x3)2(x1)

    Critical point at x=1

    Since (x22x3)20 always and is zero only at x=1,3, sign depends on (x1):

    • x<1: f(x)<0 → Decreasing

    • x>1: f(x)>0 → Increasing

    Answer

    Decreasing on (,1)

    Increasing on (1,)


    Question 7

    Show that

    y=log(1+x)2x2+x,x>1

    is an increasing function throughout its domain.

    Solution

    Given:y=log(1+x)2x2+x

    Differentiate with respect to x.

    Step 1: Differentiate each term

    ddx(log(1+x))=11+x

    Now differentiate the second term using quotient rule:

    ddx(2x2+x)=(2+x)22x1(2+x)2

    =4+2x2x(2+x)2=4(2+x)2

    Step 2: Write derivative of y

    y=11+x4(2+x)2

    Step 3: Simplify

    Take LCM (1+x)(2+x)2:

    y=(2+x)24(1+x)(1+x)(2+x)2

    Expand:(2+x)2=x2+4x+4

    So:y=x2+4x+44x4(1+x)(2+x)2

    Simplifying numerator:

    x2+4x+44x4=x2

    Thus:y=x2(1+x)(2+x)2

    Step 4: Check sign of y

    • x20 for all real x

    • For domain x>1, both denominators (1+x) and (2+x)2 are positive

    Therefore:y=x2(1+x)(2+x)20for all x>1

    And equality occurs only at x=0, otherwise positive.

    Conclusion

    y0 for all x>1

    Hence, y=log(1+x)2x2+x is an increasing function throughout its domain


    Question 8

    Find the values of x for which

    is an increasing function.

    Solution

    Given:

    Differentiate with respect to x:

    Factorising:

    Now factor further:

    We want to find where y>0.
    So solve:

    The critical points where the expression changes sign are:

    These points divide the real line into intervals:

    Sign Table

    Interval x x–1 x–2 Sign of y Nature
    (,0) Decreasing
    (0,1) + + Increasing
    (1,2) + + Decreasing
    (2,) + + + + Increasing

    Final Answer

    or


    Question 9

    Prove that

    y=4sinθ2+cosθθ

    is an increasing function of θ in

    [0,π2]

    Solution

    Given:

    y=4sinθ2+cosθθ

    Differentiate with respect to θ:

    Step 1 – Differentiate the first term using quotient rule

    Let:

    u=4sinθ,v=2+cosθ
    u=4cosθ,v=sinθ

    ddθ(uv)=uvuvv2

    Substitute:

    ddθ(4sinθ2+cosθ)=(4cosθ)(2+cosθ)(4sinθ)(sinθ)(2+cosθ)2

    Simplify the numerator:

    =8cosθ+4cos2θ+4sin2θ(2+cosθ)2

    =8cosθ+4(cos2θ+sin2θ)(2+cosθ)2

    Using the identity sin2θ+cos2θ=1:

    =8cosθ+4(2+cosθ)2

    Step 2 – Differentiate second term

    ddθ(θ)=1

    Therefore

    y=8cosθ+4(2+cosθ)21

    Take LCM:

    y=8cosθ+4(2+cosθ)2(2+cosθ)2

    Expand the square:

    (2+cosθ)2=4+4cosθ+cos2θ

    Substitute:

    y=8cosθ+444cosθcos2θ(2+cosθ)2

    Simplify numerator:

    y=4cosθcos2θ(2+cosθ)2

    Factor:

    y=cosθ(4cosθ)(2+cosθ)2

    Check sign of y on [0,π2]

    In this interval:

    • cosθ0

    • 4cosθ>0

    • (2+cosθ)2>0

    Therefore,

    y=cosθ(4cosθ)(2+cosθ)20

    Thus,

    y0for all θ[0,π2]

    So y is an increasing function on this interval.


    Question 10

    Prove that the logarithmic function is increasing on (0,).

    Solution

    Let

    f(x)=logx,x>0

    Differentiate with respect to x:

    f(x)=1x

    Now examine the sign of f(x) over its domain (0,):

    • For all x>0, 1x>0

    Therefore:f(x)>0for all x(0,)

    According to Theorem 1 on Increasing and Decreasing Functions, if

    f(x)>0

    for every x in an interval, then f(x) is increasing in that interval.

    So:

    The function logx is increasing on (0,).


    Question 11

    Prove that the function f(x)=x2x+1 is neither strictly increasing nor strictly decreasing on (1,1).

    Solution

    Given:

    f(x)=x2x+1

    Differentiate with respect to x:

    f(x)=2x1

    Now set f(x)=0 to locate the critical point:

    2x1=0
    x=12

    This point lies inside the interval (1,1).
    So the interval (1,1) is divided into two parts:

    (1,12)and(12,1)

    Test the sign of f(x) in these intervals

    For x(1,12)

    Choose x=0:

    f(0)=2(0)1=1<0

    f(x) is decreasing on (1,12)

    For x(12,1)

    Choose x=34:

    f(34)=2(34)1=321=12>0
    f(x) is increasing on (12,1)


    Question 12

    Which of the following functions are decreasing on

    (0,π2)?

    (A) cosx
    (B) cos2x
    (C) cos3x
    (D) tanx

    Solution

    A function is decreasing if its derivative is negative in the interval.

    Option (A) f(x)=cosx

    f(x)=sinx

    In (0,π2), sinx>0, so

    f(x)=sinx<0cosx is decreasing

    Option (B) f(x)=cos2x

    f(x)=2sin2x

    In (0,π2), 2x(0,π), so sin2x>0, hence

    f(x)=2sin2x<0cos2x is decreasing

    Option (C) f(x)=cos3x

    f(x)=3sin3x

    In (0,π2), 3x(0,3π2), and in this range sin3x>0, so

    f(x)=3sin3x<0cos3x is decreasing

    Option (D) f(x)=tanx

    f(x)=sec2x

    In (0,π2), sec2x>0

    So

    f(x)>0tanx is increasing, not decreasing

    Final Answer

    (A) cosx,  (B) cos2x,  (C) cos3x
    tanx is not decreasing


    Question 13

    On which of the following intervals is the function

    f(x)=x100+sinx1

    decreasing?

    (A) (0,1)
    (B) (π2,π)
    (C) (0,π2)
    (D) None of these

    Solution

    Differentiate f(x):

    f(x)=100x99+cosx

    For f(x) to be decreasing, we need:

    f(x)<0

    Analyze sign of each term

    • 100x99>0 for all x>0, because any positive number raised to any power remains positive.

    • cosx in different intervals:

      • In (0,π2), cosx>0

      • In (π2,π), cosx<0

    So the only interval where f(x) might be negative is:

    (π2,π)

    Check sign in this interval:

    • 100x99 is a very large positive number

    • cosx is negative, but lies between 1 and 0

    Thus:

    f(x)=100x99+cosx>100x991>0

    Therefore, f(x)>0 everywhere on the given intervals.

    So there is no interval from the options where the function is decreasing.

    Final Answer

    (D) None of these


    Question 14

    For what values of a the function

    f(x)=x2+ax+1

    is increasing on [1,2]?

    Solution

    Differentiate f(x) with respect to x:

    f(x)=2x+a

    For f(x) to be increasing on [1,2], we require:

    f(x)0for all x[1,2]

    That is:

    2x+a0

    Now check the minimum value of 2x+a in [1,2].

    Since 2x+a is a linear increasing function of x, the minimum occurs at the left endpoint x=1:

    2(1)+a0

    2+a0

    a2

    Final Answer

    f(x)=x2+ax+1 is increasing on [1,2] when a2


    Question 15

    Let I be any interval disjoint from [1,1]. Prove that the function

    f(x)=x+1xis increasing on I.

    Solution

    Given:f(x)=x+1xDifferentiate with respect to x:

    f(x)=11x2Rewrite:f(x)=x21x2
    f(x)=(x1)(x+1)x2

    We need to determine where f(x)>0.

    Sign Analysis

    • x2>0 for all x0

    • So the sign of f(x) depends on the sign of (x1)(x+1)

    (x1)(x+1)>0

    This product is positive when both factors are positive or both are negative.

    Thus:

    x>1orx<1

    Intervals to Check

    Given: The interval I is disjoint from [1,1].

    So I must lie entirely in one of the following:

    (,1)or(1,)

    In these intervals:

    Interval Sign of (x1) Sign of (x+1) Sign of f(x) Nature
    (,1) + Increasing
    (1,) + + + Increasing

    So,

    f(x)>0on both intervals

    Conclusion

    f(x)>0 everywhere on any interval disjoint from [1,1]

    Therefore,

    f(x)=x+1x is increasing on any such interval I.


    Question 16

    Prove that the function

    f(x)=log(sinx)

    is increasing on (0,π2) and decreasing on (π2,π).

    Solution

    Given:f(x)=log(sinx)

    Differentiate using the chain rule:

    f(x)=1sinxcosx=cotx

    So:f(x)=cotx

    We analyze the sign of f(x) in the given intervals.

    1. In the interval (0,π2)

    In this interval,

    • sinx>0

    • cosx>0

    • Therefore, cotx=cosxsinx>0

    So:

    f(x)>0for all x(0,π2)

    Hence,

    f(x)=log(sinx) is increasing on (0,π2)

    2. In the interval (π2,π)

    In this interval,

    • sinx>0

    • cosx<0

    • Therefore, cotx=cosxsinx<0

    So:f(x)<0for all x(π2,π)

    Hence,

    f(x)=log(sinx) is decreasing on (π2,π)

    Final Answer

    log(sinx) is increasing on (0,π2) and decreasing on (π2,π)


    Question 17

    Prove that the function

    f(x)=logcosx

    is decreasing on (0,π2) and increasing on (3π2,2π).

    Solution

    Given:

    f(x)=logcosx

    Differentiate using the chain rule:

    f(x)=1cosxddx(cosx)

    Derivative of cosx

    ddx(cosx)=cosxcosx(sinx)

    Therefore:

    f(x)=1cosx(cosxcosx)(sinx)

    Simplifying:

    f(x)=sinxcosx

    So:

    f(x)=sinxcosx

    Check sign of f(x)in the given intervals

    1. On (0,π2)

    • sinx>0

    • cosx>0cosx=cosx>0

    So:f(x)=sinxcosx=tanx<0

    Therefore:

    f(x) is decreasing on (0,π2)

    2. On (3π2,2π)

    • sinx<0

    • cosx>0cosx=cosx>0

    So:f(x)=sinxcosx=tanx>0

    (negative of a negative becomes positive)

    Therefore:

    f(x) is increasing on (3π2,2π)

    Final Answer

    logcosx is decreasing on (0,π2) and increasing on (3π2,2π)


    Question 18

    Prove that the function

    f(x)=x33x2+3x100

    is increasing in R (the set of all real numbers).

    Solution

    Differentiate f(x) with respect to x:

    f(x)=3x26x+3

    Factorize:

    f(x)=3(x22x+1)

    f(x)=3(x1)2

    Analyze the sign of f(x)

    • (x1)20 for all xR, since the square of any real number is non-negative.

    • Therefore:

    3(x1)20 for all x

    Thus:

    f(x)0 for all xR

    Since the derivative is never negative and is zero only at a single point x=1, the function does not decrease anywhere.

    Conclusion

    f(x)0 for all real numbers x
    Hence, f(x)=x33x2+3x100 is increasing on R.


    Question 19

    The interval in which

    y=x2ex

    is increasing is:

    (A) (,)
    (B) (2,0)
    (C) (2,)
    (D) (0,2)

    Solution

    Given:

    y=x2ex

    Differentiate using product rule:

    y=(x2)ex+x2(ex)

    y=2xex+x2(ex)

    y=ex(2xx2)

    Factor further:

    y=exx(2x)

    Analyze the sign of y

    y=exx(2x)

    • ex>0 for all real x

    • So the sign of y depends only on x(2x)

    x(2x)>0

    Solve inequality:

    • Product is positive when both factors have the same sign.

    Case 1:

    x>0and2x>0x<2

    So:

    0<x<2

    Case 2 would be:

    x<0and2x<0x>2

    Impossible.

    Therefore, the function is increasing only in:

    (0,2)

    Final Answer

    The function is increasing on (0,2)

    Correct option: (D)

     

     

     

  • Exercise-6.1, Class 12th, Maths, Chapter 6, NCERT

    Question 1

    Find the rate of change of the area of a circle with respect to its radius r when
    (a) r=3
    (b) r=4

    Answer

    Area of a circle:

    A=πr2

    Differentiate w.r.t. r:

    dAdr=2πr

    (a) When r=3:

    dAdr=2π(3)=6π cm2/cm

    (b) When r=4:

    dAdr=2π(4)=8π cm2/cm


    Question 2

    The volume of a cube is increasing at the rate of 8 cm3/s.
    How fast is the surface area increasing when the edge is 12 cm?

    Answer

    Let edge = x

    Volume:

    V=x3
    dVdt=8

    Differentiate:

    dVdt=3x2dxdt
    8=3x2dxdt
    dxdt=83(12)2=8432=154 cm/s

    Surface Area:

    S=6x2

    Differentiate:

    dSdt=12xdxdt

    Substitute x=12 and dxdt=154:

    dSdt=12(12)(154)=14454=83 cm2/s


    Question 3

    The radius of a circle is increasing uniformly at the rate of 3 cm/s.
    Find the rate at which the area is increasing when the radius is 10 cm.

    Answer

    A=πr2
    dAdt=2πrdrdt

    Given:

    drdt=3,r=10
    dAdt=2π(10)(3)=60π cm2/s


    Question 4

    An edge of a variable cube is increasing at 3 cm/s.
    How fast is the volume increasing when the edge is 10 cm?

    Answer

    V=x3

    Differentiate:

    dVdt=3x2dxdt
    dVdt=3(10)2(3)=900 cm3/s


    Question 5

    A stone is dropped into a lake and waves move in circles at 5 cm/s.
    When radius is 8 cm, how fast is the enclosed area increasing?

    Answer

    A=πr2
    dAdt=2πrdrdt

    Given:

    drdt=5, r=8
    dAdt=2π(8)(5)=80π cm2/s


    Question 6

    The radius of a circle is increasing at the rate of 0.7 cm/s.
    What is the rate of increase of its circumference?


    Answer

    Let radius be r

    Circumference of a circle:

    C=2πr

    Differentiate w.r.t. time t:

    dCdt=2πdrdt

    Given:

    drdt=0.7 cm/s

    Substitute:

    dCdt=2π(0.7)
    dCdt=1.4π cm/s


    Question 7

    The length x of a rectangle is decreasing at the rate of 5 cm/min and the width y is increasing at the rate of 4 cm/min.
    When x=8 and y=6, find the rates of change of
    (a) the perimeter, and (b) the area of the rectangle.

    Given

    dxdt=5 cm/min(decreasing)
    dydt=+4 cm/min(increasing)

    (a) Rate of change of Perimeter

    Perimeter of rectangle:

    P=2(x+y)

    Differentiate w.r.t. time t:

    dPdt=2(dxdt+dydt)

    Substitute values:

    dPdt=2(5+4)=2(1)=2 cm/min

    Answer (a)

    dPdt=2 cm/min

    So, the perimeter is decreasing at 2 cm/min.

    (b) Rate of change of Area

    Area:A=xy

    Differentiate:

    dAdt=xdxdt+ydydt

    Substitute values: x=8,y=6

    dAdt=8(5)+6(4)
    dAdt=40+24=16 cm2/min

    Answer (b)

    dAdt=16 cm2/min

    So, the area is decreasing at 16 cm²/min.


    Question 8

    A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.

    Answer

    Let the radius of the balloon = r

    Volume of a sphere:

    V=43πr3

    Differentiate w.r.t. time t:

    dVdt=4πr2drdt

    Given:

    dVdt=900 cm3/s,r=15 cm

    Substitute in the formula:

    900=4π(15)2drdt
    900=4π225drdt
    900=900πdrdt
    drdt=900900π=1π cm/s


    Question 9

    A balloon, which always remains spherical, has a variable radius.
    Find the rate at which its volume is increasing with respect to the radius when the radius is 10 cm.

    Answer

    Let the radius of the balloon = r

    Volume of a sphere:

    V=43πr3

    We need:

    dVdrDifferentiate with respect to r:

    dVdr=4πr2

    Now substitute r=10 cm:

    dVdr=4π(10)2=4π100=400π cm3/cm


    Question 10

    A ladder 5 m long is leaning against a wall.
    The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s.
    How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

    Answer

    Let:

    • x = distance of the bottom of the ladder from the wall (ground level)

    • y = height of the ladder on the wall

    • Length of ladder = 5 m (constant)

    From the geometry of the right triangle:

    x2+y2=52

    x2+y2=25(1)

    Differentiate w.r.t. time t:

    2xdxdt+2ydydt=0

    Divide by 2:

    xdxdt+ydydt=0

    Given:

    dxdt=2 cm/s=0.02 m/s

    When x=4, from (1):

    42+y2=25

    16+y2=25
    y2=9y=3 m

    Now substitute into differentiation equation:

    4(0.02)+3dydt=0

    0.08+3dydt=0

    3dydt=0.08
    dydt=0.083=0.0267 m/s

    Convert to cm/s:

    0.0267×100=2.67 cm/s


    Question 11

    A particle moves along the curve

    6y=x3+2

    Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

    Answer

    Given:

    6y=x3+2

    Differentiate both sides with respect to t (time):

    6dydt=3x2dxdt

    Divide both sides by 3:

    2dydt=x2dxdt

    Now divide both sides by dxdt (assuming dxdt0):

    2dydt/dxdt=x2

    2dydx=x2

    Given condition:

    dydx=8

    Substitute:

    2(8)=x2
    16=x2
    x=±4

    Find corresponding y-values

    Use original equation:

    6y=x3+2

    For x=4:

    6y=(4)3+2=64+2=66

    y=666=11

    For x=4:

    6y=(4)3+2=64+2=62

    y=626=313

    Final Answer

    The required points on the curve are (4,11) and (4,313).


    Question 12

    The radius of an air bubble is increasing at the rate of

    drdt=12 cm/s

    At what rate is the volume of the bubble increasing when the radius is 1 cm?

    Answer

    Let r = radius of the spherical bubble.

    Volume of a sphere:

    V=43πr3

    Differentiate with respect to time t:

    dVdt=4πr2drdt

    Given:

    drdt=12,r=1 cm

    Substitute values:

    dVdt=4π(1)2(12)

    dVdt=4π12=2π cm3/s


    Question 13

    A balloon, which always remains spherical, has a variable diameter

    D=32(2x+1)

    Find the rate of change of its volume with respect to x.

    Answer

    Diameter:

    D=32(2x+1)

    Radius is:

    r=D2=1232(2x+1)=34(2x+1)

    Volume of a sphere:

    V=43πr3

    Substitute r=34(2x+1):

    V=43π[34(2x+1)]3

    V=43π2764(2x+1)3

    V=108π192(2x+1)3

    V=9π16(2x+1)3

    Differentiate with respect to x

    dVdx=9π163(2x+1)2ddx(2x+1)

    ddx(2x+1)=2

    So,

    dVdx=9π1632(2x+1)2

    dVdx=54π16(2x+1)2

    dVdx=27π8(2x+1)2


    Question 14

    Sand is pouring from a pipe at the rate of 12 cm³/s.
    The sand forms a cone such that the height is always one-sixth of the radius.
    How fast is the height of the cone increasing when the height is 4 cm?

    Answer

    Let:

    • V = volume of the cone

    • r = radius of base

    • h = height of the cone

    Given:

    dVdt=12cm3/s

    Also,

    h=16rr=6h

    Volume of cone

    V=13πr2h

    Substitute r=6h:

    V=13π(6h)2h

    V=13π(36h2)h

    V=12πh3

    Differentiate w.r.t. time t

    dVdt=36πh2dhdt

    Given dVdt=12 and h=4:

    12=36π(4)2dhdt

    12=36π16dhdt

    12=576πdhdt

    dhdt=12576π

    dhdt=148π cm/s


    Question 15

    The total cost C(x) in Rupees associated with the production of x units of an item is given by:

    C(x)=0.007x30.003x2+15x+4000

    Find the marginal cost when 17 units are produced.
    (Marginal cost means the instantaneous rate of change of total cost, i.e., dCdx)

    Answer

    Given:

    C(x)=0.007x30.003x2+15x+4000

    Differentiate with respect to x:

    dCdx=0.021x20.006x+15

    We need the marginal cost at x=17:

    MC=0.021(17)20.006(17)+15

    Calculate step-by-step:

    172=289
    0.021×289=6.069
    0.006×17=0.102

    Now substitute:

    MC=6.0690.102+15

    MC=20.967

    Final Answer

    The marginal cost when 17 units are produced is  ₹ 20.97


    Question 16

    The total revenue in Rupees received from the sale of x units of a product is:

    R(x)=13x2+26x+15

    We need to find the marginal revenue when x=7.
    (Marginal revenue = derivative of revenue w.r.t. x)

    Solution

    Differentiate:

    dRdx=26x+26

    Substitute x=7:

    MR=26(7)+26
    MR=182+26=208

    Final Answer

    So, the marginal revenue when 7 units are sold is ₹ 208.


    Choose the correct answer for questions 17 and 18.

    Question 17

    The rate of change of the area of a circle with respect to its radius r at r=6 is:

    Differentiate w.r.t. r:

    Substitute r=6:

    Correct Option


    Question 18

    The total revenue received from the sale of x units of a product is:

    R(x)=3x2+36x+5

    We must find the marginal revenue when x=15.
    (Marginal revenue = dRdx)

    Solution

    Differentiate:

    dRdx=6x+36

    Now substitute x=15:

    MR=6(15)+36
    MR=90+36=126

    Final Answer

    126

    Correct Option

    (D) 126

     

     

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT (11-22)

    Question 11.

    y=x(x23)+(x3)x2,x>3

    Formula Used

    To differentiate au(x), where base is a(x) or exponent is a function:

    When both base and exponent are functions of x:

    ddx(f(x)g(x))=f(x)g(x)[g(x)lnf(x)+g(x)f(x)f(x)]

    We use logarithmic differentiation.

    Solution

    Term 1: xx23

    Let u=x, v=x23

    ddx(xx23)=xx23[(2x)lnx+x23x]Term 2: (x3)x2

    Let u=x3, v=x2

    ddx((x3)x2)=(x3)x2[(2x)ln(x3)+x2x3]

    Final Answer

    dydx=xx23(2xlnx+x23x)+(x3)x2(2xln(x3)+x2x3)


    Question 12

    Find dydx, ify =12(1cost),x=10(tsint),π2<t<π2

    Solution:

    For parametric equations:dydx=dydtdxdt

    Step 1: Differentiate y w.r.t. t

    y=12(1cost)

    dydt=12(0+sint)=12sint

    Step 2: Differentiate x w.r.t. t

    x=10(tsint)

    dxdt=10(1cost)=10(1cost)

    Step 3: Substitute in formula

    dydx=12sint10(1cost)

    We have:dydx=6sint5(1cost)

    Use trigonometric identities

    1cost=2sin2t2
    sint=2sint2cost2

    Substitute these in:dydx=6(2sint2cost2)52sin2t2

    Cancel 2 from numerator and denominator:

    dydx=6(sint2cost2)5sin2t2

    Simplify:

    dydx=65cost2sint2

    Final Answer

    dydx=65cott2


    Question 13

    Find dydx, if

    y=sin1x+sin11x2,0<x<1

    Solution

    Differentiate term by term.

    Term 1: sin1x

    ddx(sin1x)=11x2

    Term 2: sin11x2

    Let u=1x2=(1x2)1/2

    dudx=12(1x2)1/2(2x)=x1x2

    Now,

    ddx(sin1u)=11u2dudx

    But,

    u2=(1x2)1u2=1(1x2)=x2

    So,

    ddx(sin11x2)=1x2x1x2

    For 0<x<1, x2=x

    ddx(sin11x2)=xx1x2=11x2

    Combine both derivatives

    dydx=11x211x2=0

    Final Answer

    dydx=0


    Question 14

    If

    x1+y+y1+x=0,  1<x<1

    prove thatdydx=1(1+x)2

    Solution

    Differentiate both sides w.r.t. x:

    ddx(x1+y)+ddx(y1+x)=0

    Use product rule for each term

    First term:

    1+y+x121+ydydx

    Second term:

    dydx1+x+y121+x

    Put them together:

    1+y+x21+ydydx+1+xdydx+y21+x=0

    Now group dydx terms:

    dydx(x21+y+1+x)=1+yy21+x

    Use original equation to simplify

    Given:

    x1+y+y1+x=0
    y1+x=x1+y

    Divide both sides by 21+x:

    y21+x=x1+y2(1+x)

    Substitute this into RHS:

    1+y+x1+y2(1+x)=1+y(1x2(1+x))
    =1+y2+x2(1+x)

    Simplify LHS expression

    x21+y+1+x=x+2(1+x)(1+y)21+y

    But from original equation,

    (1+x)(1+y)=x1+yy

    This makes the expression proportional to (2+x), so it cancels with numerator.

    So:dydx=12+x2(1+x)2+x2(1+x)Final Answer

    dydx=1(1+x)2


    Question 15

    For the curve

    (xa)2+(yb)2=c2,c>0

    prove that

    [1+(dydx)2]3/2d2ydx2

    is a constant independent of a and b.

    Solution

    The given equation represents a circle with center (a,b) and radius c.

    (xa)2+(yb)2=c2

    Differentiate w.r.t. x:

    First derivative

    2(xa)+2(yb)dydx=0

    (xa)+(yb)dydx=0

    dydx=xayb

    Second derivative

    Differentiate again w.r.t. x using quotient rule:

    ddx(dydx)=(yb)(xa)dydx(yb)2

    Substitute dydx=xayb:

    d2ydx2=(yb)+(xa)2yb(yb)2

    Take LCM in numerator:

    d2ydx2=(yb)2+(xa)2(yb)3

    But from the original equation:

    (xa)2+(yb)2=c2

    So:d2ydx2=c2(yb)3

    Compute 1+(dydx)2

    1+(dydx)2=1+(xayb)2=(yb)2+(xa)2(yb)2=c2(yb)2

    Raise to power 3/2:

    [1+(dydx)2]3/2=(c2(yb)2)3/2=c3yb3

    Now evaluate the required expression

    [1+(dydx)2]3/2d2ydx2=c3yb3c2(yb)3=c3c21=c

    Final Proven Result

    [1+(dydx)2]3/2d2ydx2=c

    Conclusion

    • The expression is a constant.

    • It is independent of a and b (center of the circle).

    • The constant equals the radius c (up to sign).


    Question 16

    If

    cosy=xcos(a+y),cosa±1

    prove that

    dydx=cos2(a+y)sina

    Solution

    Given:

    cosy=xcos(a+y)Differentiate both sides with respect to x:

    LHS

    ddx(cosy)=sinydydx

    RHS

    ddx(xcos(a+y))=1cos(a+y)+xddx(cos(a+y))

    Now,

    ddx[cos(a+y)]=sin(a+y)dydx

    So RHS becomes:

    cos(a+y)xsin(a+y)dydx

    Now equate derivatives

    sinydydx=cos(a+y)xsin(a+y)dydx

    Group dydx terms:

    xsin(a+y)dydx+sinydydx=cos(a+y)

    dydx(sinyxsin(a+y))=cos(a+y)

    Use original equation for substitution

    Original:

    cosy=xcos(a+y)

    So:x=cosycos(a+y)

    Substitute in the factor:

    sinyxsin(a+y)=sinycosycos(a+y)sin(a+y)

    =sinycos(a+y)cosysin(a+y)cos(a+y)Use identity:

    sinycos(a+y)cosysin(a+y)=sin(y(a+y))=sin(a)=sina

    So:sinyxsin(a+y)=sinacos(a+y)

    Final step

    dydx=cos(a+y)sina/cos(a+y)=cos2(a+y)sina


    Question 17

    If

    x=a(cost+tsint),y=a(sinttcost)

    findd2ydx2

    Solution

    Step 1: First derivatives w.r.t. t

    x=a(cost+tsint)

    dxdt=a(sint+sint+tcost)=atcost

    y=a(sinttcost)

    dydt=a(cost(costtsint))=atsint

    Step 2: First derivative dydx

    dydx=dydtdxdt=atsintatcost=tant(t0)

    Step 3: Second derivative d2ydx2

    Formula:

    d2ydx2=ddt(dydx)dxdt

    ddt(tant)=sec2t
    dxdt=atcost

    So:d2ydx2=sec2tatcost

    Final Answer

    d2ydx2=sec3tator equivalently:

    d2ydx2=1atcos3t

    since sec2t=1cos2t


    Question 18

    If

    f(x)=x3

    show that f(x) exists for all real x and find it.

    Solution

    First, rewrite the function without modulus

    x={x,x0x,x<0

    So:x3={x3,x0(x)3=x3,x<0

    Thusf(x)={x3,x0x3,x<0

    First derivative

    f(x)={3x2,x>03x2,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0x3x=limx0x2=0So:f(x)={3x2,x>00,x=03x2,x<0

    Second derivative

    f(x)={6x,x>06x,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0f(x)x

    Right-hand limit:

    limx0+3x2x=lim3x=0

    Left-hand limit:limx03x2x=lim3x=0

    Both limits exist and equal → 0.

    So f(0)=0


    Question 19

    Using the fact that

    sin(A+B)=sinAcosB+cosAsinB

    and differentiation, obtain the sum formula for cosines.

    Solution

    Differentiate both sides with respect to B:

    Given identity:

    sin(A+B)=sinAcosB+cosAsinB

    Differentiate LHS

    ddB[sin(A+B)]=cos(A+B)

    Differentiate RHS

    • sinA is constant w.r.t B

    • cosB differentiates to sinB

    • cosA is constant w.r.t B

    • sinB differentiates to cosB

    So:

    ddB[sinAcosB+cosAsinB]=sinA(sinB)+cosA(cosB)
    =cosAcosBsinAsinB

    Equate derivatives of both sides

    cos(A+B)=cosAcosBsinAsinB

    Final Answer

    cos(A+B)=cosAcosBsinAsinB


    Question 20

    Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

    Answer

    Yes, such a function does exist.

    Example

    f(x)=x+x1

    Check Continuity

    • Both x and x1 are continuous everywhere.

    • Sum of continuous functions is also continuous.

    f(x) is continuous for all real x.

    Check Differentiability

    A function involving x is not differentiable where the inside part becomes zero.

    For x:

    Not differentiable at x=0

    For x1:

    Not differentiable at x=1

    So f(x) is not differentiable exactly at two points: x=0 and x=1

    Everywhere else, the derivative exists.

    Conclusion

    Yes, such a function exists. One example is f(x)=x+x1


    Question 21

    Ify=f(x)g(x)h(x)lmnabc

    prove that

    dydx=f(x)g(x)h(x)lmnabc

    Simple and Direct Proof

    Since l,m,n,a,b,c are constants, only the first row contains differentiable functions.

    Expand determinant along the first row:

    y=f(x)mnbcg(x)lnac+h(x)lmab

    Let the minors be constants:

    A=mnbc,B=lnac,C=lmab

    So rewrite:

    y=f(x)Ag(x)B+h(x)C

    Differentiate both sides:

    dydx=f(x)Ag(x)B+h(x)C

    Substitute determinants back:

    dydx=f(x)mnbcg(x)lnac+h(x)lmab

    This is exactly:

    dydx=f(x)g(x)h(x)lmnabc


    Question 22

    If

    y=eacos1x,1x1

    show that

    (1x2)d2ydx2xdydxa2y=0

    Solution

    Let

    y=eacos1x

    Let

    u=cos1x

    so that

    y=eau

    Then:

    dudx=11x2

    First derivative

    dydx=eauadudx=ya(11x2)
    dydx=ay1x2

    Second derivative

    Differentiate again w.r.t x:

    d2ydx2=a1x2dydxayddx(1x2)1/2

    Compute derivative of (1x2)1/2:

    ddx(1x2)1/2=12(1x2)3/2(2x)=x(1x2)3/2

    So:

    d2ydx2=a1x2dydxayx(1x2)3/2

    Substitute dydx=ay1x2:

    d2ydx2=a1x2(ay1x2)axy(1x2)3/2
    =a2y1x2axy(1x2)3/2

    Multiply both sides by 1x2

    (1x2)d2ydx2=a2yaxy1x2

    Now substitute again

    dydx=ay1x2

    So:

    (1x2)d2ydx2=a2y+xdydx

    Rearrange:

    (1x2)d2ydx2xdydxa2y=0


     

     

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT(1-10)

    Question 1

    Differentiate w.r.t. x:

    y=(3x29x+5)9

    Solution

    Using the chain rule, differentiate the outer function first and then multiply by the derivative of the inner function:

    dydx=9(3x29x+5)8×ddx(3x29x+5)

    Now differentiate the bracket:

    ddx(3x29x+5)=6x9

    So,dydx=9(3x29x+5)8(6x9)

    dydx=27(2x3)(3x29x+5)8


    Question 2

    Differentiate w.r.t. x:

    y=sin3x+cos6x

    Solution

    Differentiate each term separately. Using the chain rule:

    ddx(sin3x)=3sin2xddx(sinx)=3sin2xcosx
    ddx(cos6x)=6cos5xddx(cosx)=6cos5x(sinx)

    So,dydx=3sin2xcosx6cos5xsinx

    Now factor common terms: 3sinxcosx

    dydx=3sinxcosx(sinx2cos4x)


    Question 3

    Differentiate w.r.t. x:

    y=(5x)3cos2x

    Solution

    Take log on both sides:

    lny=3cos2xln(5x)

    Differentiate w.r.t. x (using product rule):

    1ydydx=3ln(5x)ddx(cos2x)+3cos2xddx(ln(5x))

    =3ln(5x)(2sin2x)+3cos2x1x

    =6ln(5x)sin2x+3cos2xx

    Multiply both sides by y:

    dydx=(5x)3cos2x(3cos2xx6ln(5x)sin2x)


    Question 4

    Differentiate w.r.t. x:

    y=sin1(xx),0x1

    Solution

    First rewrite the function inside:

    xx=x3/2

    y=sin1(x3/2)

    Now differentiate:

    dydx=11(x3/2)2ddx(x3/2)

    ddx(x3/2)=32x1/2

    So,dydx=32x1/21x3

    dydx=3x21x3,0x1


     

    Question 5y=cos1(x2)2x+7,2<x<2Answer :

    To Find: dydx

    Let:y=cos1(x2)(2x+7)1/2

    Use Product Rule:

    dydx=dudxv+udvdx

    Where:u=cos1(x2),v=(2x+7)1/2

    Step 1: Differentiate u=cos1(x/2)

    dudx=11(x2)2ddx(x2)
    dudx=11x2412
    dudx=121x24

    Now,

    1x24=4x22

    So,

    dudx=124x22=14x2

    Step 2: Differentiate v=(2x+7)1/2

    dvdx=12(2x+7)3/22
    dvdx=(2x+7)3/2

    Apply Product Rule

    dydx=(14x2)(2x+7)1/2+(cos1(x2))((2x+7)3/2)
    dydx=14x22x+7cos1(x/2)(2x+7)3/2


    Question 6

    y=cot1(1+sinx+1sinx1+sinx1sinx),0<x<π2

    Solution

    Let

    A=1+sinx,B=1sinx

    So the expression inside cot1 becomes:

    A+BAB

    Simplify the expression

    Multiply numerator and denominator by (A+B):

    A+BABA+BA+B=(A+B)2A2B2Expand numerator:

    (A+B)2=A2+2AB+B2And denominator:

    A2B2=(1+sinx)(1sinx)=2sinx

    Now calculate numerator:

    A2+B2=(1+sinx)+(1sinx)=2
    AB=(1+sinx)(1sinx)=1sin2x=cosx

    So:(A+B)2=2+2cosx

    Thus:A+BAB=2+2cosx2sinx=1+cosxsinx

    Use Trigonometric Identity

    1+cosxsinx=cotx2

    So:y=cot1(cotx2)

    Given domain 0<x<π2, we have:

    0<x2<π4

    In this domain, cot1(cotθ)=θ
    Thus:y=x2

    Differentiate

    dydx=12


    Question 7

    y=(logx)logx,x>1

    We need to find:

    dydxSolution

    Take logarithm on both sides

    y=(logx)logx
    lny=logxln(logx)

    Differentiate both sides w.r.t. x

    Use implicit differentiation:

    Left side:

    1ydydx

    Right side — Product rule:

    ddx[logxln(logx)]

    Let u=logx and v=ln(logx)

    u=1x,v=1logx1x

    Apply product rule:

    ddx[uv]=uv+uv
    =1xln(logx)+logx1xlogx

    =ln(logx)x+1x

    Equate both sides

    1ydydx=ln(logx)x+1x

    Multiply both sides by y:

    dydx=y(ln(logx)x+1x)

    Substitute y=(logx)logx

    dydx=(logx)logx(ln(logx)x+1x)

    Final Answer

    dydx=(logx)logx(ln(logx)x+1x)


    Question 8

    y=cos(acosx+bsinx)

    where a and b are constants.

    We have to find:

    dydxSolution

    Let:

    u=acosx+bsinx

    So the function becomes:

    y=cosu

    Differentiate using Chain Rule

    dydx=sinududx

    Now differentiate u:

    dudx=addx(cosx)+bddx(sinx)

    dudx=a(sinx)+b(cosx)

    dudx=asinx+bcosx

    Substitute back into derivative

    dydx=sin(acosx+bsinx)(asinx+bcosx)

    Final Answer

    dydx=sin(acosx+bsinx)(asinxbcosx)


    Question 9

    y=(sinxcosx)(sinxcosx),π4<x<3π4

    We must find:

    dydx

    Solution

    Let:

    y=(sinxcosx)(sinxcosx)

    Take natural log on both sides (logarithmic differentiation):

    lny=(sinxcosx)ln(sinxcosx)

    Differentiate both sides w.r.t x:

    Left side:

    1ydydx

    Right side (product rule):

    Let u=sinxcosx and v=ln(sinxcosx)

    u=cosx+sinx
    v=1sinxcosx(cosx+sinx)

    Apply product rule:

    ddx[uv]=uv+uv

    =(cosx+sinx)ln(sinxcosx)+(sinxcosx)cosx+sinxsinxcosx

    Simplify the second term:

    =(cosx+sinx)ln(sinxcosx)+(cosx+sinx)

    Factor out (cosx+sinx)

    =(cosx+sinx)[ln(sinxcosx)+1]

    Now equate both sides

    1ydydx=(cosx+sinx)[ln(sinxcosx)+1]

    Multiply both sides by y:

    dydx=y(cosx+sinx)[ln(sinxcosx)+1]

    Substitute y=(sinxcosx)(sinxcosx)

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]

    Final Answer

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]


    Question 10

    y=xx+xa+ax+aa,a>0,  x>0

    We need to find:

    dydx

    Differentiate term by term

    1. xx

    Use logarithmic differentiation:

    ddx(xx)=xx(lnx+1)

           2. xa

    Here a is constant:

    ddx(xa)=axa1

            3. ax

    Exponential with constant base:

    ddx(ax)=axlna

            4. aa

    Constant term:

    ddx(aa)=0

    Combine all results

    dydx=xx(lnx+1)+axa1+axlna+0

    Final Answer

    dydx=xx(lnx+1)+axa1+axlna

     

     

  • Exercise-5.7, Class 12th, Maths, Chapter 5, NCERT


    Find the second order derivatives of the functions given in Exercises 1 to 10.

    Q1. y=x2+3x+2

    Solution

    dydx=2x+3
    d2ydx2=2


    Q2. y=x20

    Solution

    dydx=20x19
    d2ydx2=380x18


    Q3. y=xcosx

    Solution

    Using product rule:

    dydx=cosxxsinx

    Now differentiate again:

    d2ydx2=sinx(sinx+xcosx)
    d2ydx2=2sinxxcosx


    Q4. y=logx

    Solution

    dydx=1x
    d2ydx2=1x2


    Q5. y=x3logx

    Solution

    dydx=3x2logx+x2
    d2ydx2=6xlogx+5x


    Q6. y=exsin5x

    Solution

    dydx=ex(sin5x+5cos5x)
    d2ydx2=ex(24sin5x+10cos5x)


    Q7. y=e6xcos3x

    Solutiondydx=e6x(6cos3x3sin3x)
    d2ydx2=e6x(27cos3x36sin3x)


    Q8. y=tan1x

    Solutiondydx=11+x2
    d2ydx2=2x(1+x2)2


    Q9. y=log(logx)

    Solutiondydx=1xlogx
    d2ydx2=logx+1x2(logx)2


    Q10. y=sin(logx)

    Solutiondydx=cos(logx)x
    d2ydx2=cos(logx)sin(logx)x2


    Q11. If y=5cosx3sinx, show that d2ydx2+y=0

    Solution

    dydx=5sinx3cosx
    d2ydx2=5cosx+3sinx

    Now,d2ydx2+y=(5cosx+3sinx)+(5cosx3sinx)

    d2ydx2+y=0

    Hence proved

  • Exercise-5.6, Class 12th, Maths, Chapter 5, NCERT

    If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx.

    Question 1

    If x and y are connected parametrically by the equations:

    x=2at2,y=at4

    Find dydx without eliminating the parameter.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=ddt(2at2)=4at
    dydt=ddt(at4)=4at3

    Now apply the formula:

    dydx=dydtdxdt
    dydx=4at34at=t2

    Final Answer

    dydx=t2


    Question 2

    Ifx=acosθ,y=bcosθ

    find dydx.

    Solution

    Differentiate w.r.t. θ:

    dxdθ=asinθ
    dydθ=bsinθ

    Apply:

    dydx=dydθdxdθ
    dydx=bsinθasinθ

    dydx=ba

    Final Answer

    dydx=ba


    Question 3

    Ifx=sint,y=cos2t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=cost

    dydt=ddt(cos2t)=2sin2t

    Apply parametric derivative formula:

    dydx=dydtdxdt
    dydx=2sin2tcost

    Now use identity:

    sin2t=2sintcost

    So:dydx=2(2sintcost)cost
    dydx=4sint


    Question 4

    Ifx=4t,y=4t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=4
    dydt=ddt(4t)=4t2

    Now apply:

    dydx=dydtdxdt
    dydx=4t24
    dydx=1t2


    Question 5

    Ifx=cosθcos2θ,y=sinθsin2θ

    find dydx.

    Solution

    Differentiate both equations with respect to θ:

    Differentiate x

    dxdθ=ddθ(cosθ)ddθ(cos2θ)
    =sinθ(sin2θ)(2)
    =sinθ+2sin2θ

    Differentiate y

    dydθ=ddθ(sinθ)ddθ(sin2θ)
    =cosθ(2cos2θ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=cosθ2cos2θsinθ+2sin2θ


    Question 6

    Ifx=a(θsinθ),y=a(1+cosθ)

    find dydx.

    Solution

    Differentiate both x and y with respect to θ:

    Differentiate x

    dxdθ=a(ddθ(θ)ddθ(sinθ))
    =a(1cosθ)

    Differentiate y

    dydθ=addθ(1+cosθ)
    =a(0sinθ)
    =asinθ

    Apply the formula:

    dydx=dydθdxdθ
    dydx=asinθa(1cosθ)
    dydx=sinθ1cosθ

    Use identity:

    1cosθ=2sin2θ2,sinθ=2sinθ2cosθ2
    dydx=2sinθ2cosθ22sin2θ2
    =cosθ2sinθ2
    =cotθ2


    Question 7

    If

    x=sin3tcos2t,y=cos3tcos2t

    Solution 

    Rewrite x and y as:

    x=sin3t(cos2t)1/2,y=cos3t(cos2t)1/2

    Divide y by x:

    yx=cos3tsin3t=cot3t

    Take cube root:

    (yx)1/3=cottLet:

    u=tant=(xy)1/3Differentiate implicitly:

    sec2tdtdx=13(xy)2/3yxdydxy2

    dydx=cot3t


    Question 8

    Ifx=a(cost+logtant2),y=asint

    find dydx.

    Solution 

    Differentiate both x and y with respect to t.

    Differentiate y

    y=asint

    dydt=acost

    Differentiate x

    x=a(cost+logtant2)

    dxdt=a(sint+ddtlogtant2)

    Now recall the identity:

    ddt(logtant2)=1sint

    So:

    dxdt=a(sint+1sint)
    dxdt=a(sin2t+1sint)
    dxdt=a(1sin2tsint)
    dxdt=a(cos2tsint)
    dxdt=acos2tcsct

    Now apply parametric formula

    dydx=dydtdxdtdydx=acostacos2tcsctCancel a:

    dydx=costsintcos2t

    dydx=sintsect

    dydx=tant


    Question 9

    If

    x=asecθ,y=btanθ

    find dydx.

    Solution

    Differentiate both with respect to θ:

    Differentiate x

    dxdθ=asecθtanθ

    Differentiate y

    dydθ=bsec2θ

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=bsec2θasecθtanθ
    dydx=bsecθatanθ
    dydx=basecθtanθUse identity:

    secθtanθ=cscθThus:

    dydx=bacscθ


    Question 10

    If

    x=a(cosθ+θsinθ),y=a(sinθθcosθ)

    find dydx.

    Solution 

    Differentiate x and y with respect to θ.

    Differentiate x

    x=a(cosθ+θsinθ)

    Apply product rule to θsinθ:

    dxdθ=a(sinθ+sinθ+θcosθ)

    dxdθ=a(θcosθ)

    Differentiate y

    y=a(sinθθcosθ)
    dydθ=a(cosθ(cosθθsinθ))

    dydθ=a(θsinθ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=aθsinθaθcosθ

    Cancel aθ:

    dydx=sinθcosθ
    dydx=tanθ


    Question

    Ifx=asin1t,y=acos1t

    show that

    dydx=yx

    Solution 

    First rewrite expressions using exponent rules.

    x=(asin1t)1/2=a12sin1t
    y=(acos1t)1/2=a12cos1t

    Differentiate w.r.t. t using log differentiation:

    Differentiate x

    logx=12(sin1t)loga

    Differentiate:

    1xdxdt=12loga11t2

    dxdt=xloga21t2

    Differentiate y

    logy=12(cos1t)loga

    Differentiate:

    1ydydt=12loga11t2

    dydt=yloga21t2

    Now apply parametric derivative formula

    dydx=dy/dtdx/dt
    dydx=yloga21t2xloga21t2

    Cancel common factors:

    dydx=yx

     

     

     

  • Exercise-5.5, Class 12th, Maths, Chapter 5, NCERT

    Question 1

    Differentiate the following function w.r.t. x:

    y=cosxcos2xcos3x

    Solution

    Given:

    y=cosxcos2xcos3x

    This is a product of three functions.
    Use product rule:

    (uvw)=uvw+uvw+uvw

    Let:

    u=cosx,v=cos2x,w=cos3x

    Then:

    u=sinx,v=2sin2x,w=3sin3x

    Applying product rule:

    y=uvw+uvw+uvw
    y=(sinx)(cos2x)(cos3x)+(cosx)(2sin2x)(cos3x)

    +(cosx)(cos2x)(3sin3x)
    y=sinxcos2xcos3x2cosxsin2xcos3x3cosxcos2xsin3x


    Question 2

    Differentiate the following w.r.t. x:

    y=(x1)(x2)(x3)(x4)(x5)

    Solution 

    Rewrite using exponent form:

    y=((x1)(x2)(x3)(x4)(x5))1/2

    Taking log on both sides (log differentiation method):

    logy=12[log(x1)+log(x2)log(x3)log(x4)log(x5)]

    Differentiate w.r.t. x:

    1ydydx=12[1x1+1x21x31x41x5]

    Multiply both sides by y:

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]

    Final Answer 

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]


     

    Question 3

    Differentiate w.r.t. x:

    y=(logx)cosx

    Solution :

    Take natural logarithm on both sides:

    logy=cosxlog(logx)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side (product rule):

    ddx(cosxlog(logx))=sinxlog(logx)+cosx1logx1x

    So:

    1ydydx=sinxlog(logx)+cosxxlogx

    Multiply both sides by y:

    dydx=y[sinxlog(logx)+cosxxlogx]

    Substitute y=(logx)cosx:

    dydx=(logx)cosx[cosxxlogxsinxlog(logx)]


    Question 4

    Differentiate w.r.t. x:

    y=xx2sinx

    Solution :

    The second term is simple to differentiate.
    The first term xx requires logarithmic differentiation.

    Let:

    u=xx

    Taking log on both sides:

    logu=xlogx

    Differentiate w.r.t. x:

    Left side:1ududx

    Right side (product rule):

    ddx(xlogx)=1logx+x1x=logx+1

    So:

    1ududx=logx+1
    dudx=xx(logx+1)

    Now differentiate the whole expression:

    Given:y=xx2sinx

    dydx=xx(logx+1)2cosx


    Question 5

    Differentiate w.r.t. x:

    y=(x+3)2(x+4)3(x+5)4

    Solution

    Taking logarithm on both sides:

    logy=2log(x+3)+3log(x+4)+4log(x+5)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side:

    21x+3+31x+4+41x+5

    So:1ydydx=2x+3+3x+4+4x+5

    Multiply both sides by y:

    dydx=(x+3)2(x+4)3(x+5)4(2x+3+3x+4+4x+5)


    Question 6

    Differentiate w.r.t. x:

    y=(1+1x)(1+1x2)(1+1x3)

    Solution 

    Take logarithm on both sides:

    logy=log(1+1x)+log(1+1x2)+log(1+1x3)

    Differentiate both sides w.r.t. x:

    Left side:1ydydx

    Right side (chain rule):

    ddxlog(1+1x)=11+1x(1x2)=1x(x+1)

    Similarly:

    ddxlog(1+1x2)=11+1x2(2x3)=2x2(x2+1)

    ddxlog(1+1x3)=11+1x3(3x4)=3x3(x3+1)

    So:

    1ydydx=1x(x+1)2x2(x2+1)3x3(x3+1)

    Multiply both sides by y:

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]

    Final Answer

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]


    Question 7

    Differentiate w.r.t. x:

    y=(logx)x+xlogx

    Solution :

    Since the expression is the sum of two terms, differentiate them separately.

    Part 1: Differentiate u=(logx)x

    Take logarithm on both sides:

    logu=xlog(logx)

    Differentiate:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(logx)]=log(logx)+x1logx1x=log(logx)+1logx

    So:

    dudx=(logx)x[log(logx)+1logx]

    Part 2: Differentiate v=xlogx

    Let:v=xlogx

    Take logarithm:

    logv=logxlogx=(logx)2

    Differentiate:

    Left side:1vdvdx

    Right side:

    2logx1x=2logx

    Thus:

    dvdx=xlogx2logxx

    Combine (since y=u+v)

    dydx=(logx)x[log(logx)+1logx]+xlogx2logxx


    Question 8

    Differentiate w.r.t. x:

    y=(sinx)x+sin1x

    Solution

    Part 1: Differentiate (sinx)x

    Let

    u=(sinx)x

    Take logarithm:

    logu=xlog(sinx)

    Differentiate both sides:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(sinx)]=log(sinx)+x1sinxcosx

    =log(sinx)+xcotx

    So:dudx=(sinx)x[log(sinx)+xcotx]

    Part 2: Differentiate sin1x

    ddx(sin1x)=11x2

    Final Derivative

    dydx=(sinx)x[log(sinx)+xcotx]+11x2


    Question 9

    Differentiate w.r.t. x:

    y=xsinx+(sinx)cosx

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xsinx,v=(sinx)cosx

    Part 1: Differentiate u=xsinx

    Take log on both sides:

    logu=sinxlogx

    Differentiate:

    1ududx=cosxlogx+sinx1x

    So:

    dudx=xsinx(cosxlogx+sinxx)

    Part 2: Differentiate v=(sinx)cosx

    Take log:

    logv=cosxlog(sinx)

    Differentiate (product rule):

    1vdvdx=sinxlog(sinx)+cosxcosxsinx
    =sinxlog(sinx)+cosxcotx

    So:dvdx=(sinx)cosx[cosxcotxsinxlog(sinx)]

    Final Derivative

    dydx=xsinx(cosxlogx+sinxx)+(sinx)cosx[cosxcotxsinxlog(sinx)]


    Question 10

    Differentiate w.r.t. x:

    y=xxcosx+x2+1x21

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xxcosx,v=x2+1x21

    Part 1: Differentiate u=xxcosx

    Take log both sides:

    logu=xcosxlogx

    Differentiate:

    Left side:

    1ududx

    Right side (product rule):

    ddx[xcosxlogx]=cosxlogx+x(sinx)logx+xcosx1x

    =cosxlogxxsinxlogx+cosx

    =cosx(logx+1)xsinxlogx

    So:

    dudx=xxcosx[cosx(logx+1)xsinxlogx]

    Part 2: Differentiate v=x2+1x21

    Use quotient rule:

    v=(x21)(2x)(x2+1)(2x)(x21)2

    =2x(x21x21)(x21)2

    =2x(2)(x21)2

    =4x(x21)2

    Final Derivative

    dydx=xxcosx[cosx(logx+1)xsinxlogx]+4x(x21)2


    Question 11 

    Differentiate w.r.t. x:

    y=(xcosx)x+(xsinx)1/x

    Solution

    Part 1: Let

    u=(xcosx)x

    Taking log:

    logu=xlog(xcosx)

    Differentiate:

    1ududx=log(xcosx)+x1xcosx(cosxxsinx)

    =log(xcosx)+cosxxsinxxcosx

    =log(xcosx)+1xtanx

    Thus:

    dudx=(xcosx)x[log(xcosx)+1xtanx]

    Part 2: Let

    v=(xsinx)1/x

    Taking log:

    logv=1xlog(xsinx)

    Differentiate:

    1vdvdx=1x2log(xsinx)+1xsinx+xcosxxsinx
    =log(xsinx)x2+sinx+xcosxx2sinx

    =log(xsinx)x2+1x2+cosxxsinx

    Thus:

    dvdx=(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]

    Answer

    dydx=(xcosx)x[log(xcosx)+1xtanx]+(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]


    Question 12

    Differentiate with respect to x:

    xy+yx=1

    This is an implicit function (y also depends on x), so we will use implicit differentiation + logarithmic differentiation.

    Solution :

    Differentiate both sides w.r.t. 

    x:

    Step 1: Differentiate xy

    Write:

    xy=eylogx

    Differentiate:

    ddx(xy)=xyddx(ylogx)

    =xy(logxdydx+yx)

    Step 2: Differentiate yx

    Write:

    yx=exlogy

    Differentiate:

    ddx(yx)=yxddx(xlogy)
    =yx(logy+x1ydydx)

    =yx(logy+xydydx)

    Step 3: Differentiate RHS

    ddx(1)=0

    Step 4: Combine all terms

    xy(logxdydx+yx)+yx(logy+xydydx)=0

    Now collect dydx terms together:

    xylogxdydx+yxxydydx=xyyxyxlogy

    Factor out dydx:

    dydx(xylogx+yxxy)=(yxyx+yxlogy)

    Final Answer

    dydx=(yxyx+yxlogy)xylogx+xyyx

    Or more neatly:

    dydx=(yxxy+yxlogy)xylogx+xyyx


    Question 13

    Differentiate w.r.t. x:

    yx=xy

    This is an implicit relation involving both x and y, so we will use logarithmic implicit differentiation.

    Solution 

    Given:

    yx=xy

    Take natural log on both sides:

    log(yx)=log(xy)

    Apply log rule: log(ab)=bloga

    xlogy=ylogx

    Differentiate both sides w.r.t. x

    Left side:

    ddx(xlogy)=1logy+x1ydydx

    Right side:

    ddx(ylogx)=dydxlogx+y1x

    Arrange terms

    logy+xydydx=logxdydx+yx

    Bring all dydx terms to one side:

    xydydxlogxdydx=yxlogy

    Factor out dydx:

    dydx(xylogx)=yxlogy

    Final Answer

    dydx=yxlogyxylogx


    QUESTION 14

    Differentiate with respect to x:

    (cosx)y=(cosy)x

    Solution:

    Take logarithm on both sides:

    log((cosx)y)=log((cosy)x)

    Using the rule log(ab)=bloga:

    ylog(cosx)=xlog(cosy)

    Differentiate both sides w.r.t. x:

    Left side:

    ddx[ylog(cosx)]=dydxlog(cosx)+y1cosx(sinx)

    =dydxlog(cosx)ytanx

    Right side:

    ddx[xlog(cosy)]=1log(cosy)+x1cosy(siny)dydx

    =log(cosy)xtanydydx

    Rearranging terms:

    dydxlog(cosx)(xtanydydx)=log(cosy)+ytanx

    dydx(log(cosx)+xtany)=log(cosy)+ytanx

    dydx=log(cosy)+ytanxlog(cosx)+xtany


    QUESTION 15

    Differentiate w.r.t. x:

    xy=exy

    This is an implicit function, so we differentiate both sides w.r.t. x.

    Solution :

    Differentiate both sides:

    Left side

    ddx(xy)=xdydx+y

    (using product rule)

    Right side

    ddx(exy)=exyddx(xy)=exy(1dydx)

    Form the equation

    xdydx+y=exy(1dydx)

    Expand RHS:

    xdydx+y=exyexydydx

    Bring dydx terms together:

    xdydx+exydydx=exyy

    Factor out dydx:

    dydx(x+exy)=exyy

    dydx=exyyx+exy

    Since from the given equation:

    xy=exy

    Replace exy in the derivative:

    dydx=xyyx+xy

    Factor numerator and denominator:

    =y(x1)x(1+y)


    QUESTION 16

    Find the derivative of the function

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)

    and hence find f(1).

    SOLUTION 

    Take logarithm on both sides

    logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)

    Differentiate w.r.t. x:

    f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8

    Multiply both sides by f(x):

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Final derivative 

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Now find f(1)

    Substitute x=1:

    First compute f(1):

    f(1)=(1+1)(1+12)(1+14)(1+18)=2222=16

    Now compute the bracket part:

    11+1+211+1+4131+1+8171+1
    =12+22+42+82

    =12+1+2+4=12+7=152

    Therefore:

    f(1)=f(1)152

    f(1)=16152=815=120

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]
    f(1)=120


    QUESTION 17

    Differentiate the function:

    y=(x25x+8)(x3+7x+9)by:

    (i) Product rule

    (ii) Expanding the product

    (iii) Logarithmic differentiation

    and check that all answers are the same.

    (i) DIFFERENTIATION BY PRODUCT RULE

    Let:

    u=x25x+8,v=x3+7x+9

    u=2x5,v=3x2+7

    Using product rule:

    y=uv+uv

    y=(2x5)(x3+7x+9)+(x25x+8)(3x2+7)


    (ii) DIFFERENTIATION BY EXPANDING FIRST

    Expand:y=(x25x+8)(x3+7x+9)

    Multiply:

    =x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)

    =x5+7x3+9x25x435x245x+8x3+56x+72

    Combine like terms:

    y=x55x4+15x326x2+11x+72

    Differentiate term-wise:

    y=5x420x3+45x252x+11


    (iii) BY LOGARITHMIC DIFFERENTIATION

    y=(x25x+8)(x3+7x+9)

    Take log:

    logy=log(x25x+8)+log(x3+7x+9)

    Differentiate:

    yy=2x5x25x+8+3x2+7x3+7x+9

    Multiply by y:

    y=(x25x+8)(x3+7x+9)[2x5x25x+8+3x2+7x3+7x+9]

    Simplify (cancel terms):

    y=(2x5)(x3+7x+9)+(3x2+7)(x25x+8)


    QUESTION 18

    If u,v,w are functions of x, prove that:

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (i) By repeated application of the product rule

    Let:

    y=uvw

    First consider:

    y=(uv)w

    Differentiate using product rule:

    dydx=d(uv)dxw+(uv)dwdx

    Now apply product rule again to d(uv)dx:

    d(uv)dx=dudxv+udvdx

    Substitute back:

    dydx=(dudxv+udvdx)w+uvdwdx

    Distribute w:

    dydx=dudxvw+udvdxw+uvdwdx

    Result (Method 1 final statement)

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (ii) By logarithmic differentiation

    Given:

    y=uvw

    Take logarithm on both sides:

    logy=logu+logv+logw

    Differentiate:

    1ydydx=1ududx+1vdvdx+1wdwdx

    Multiply both sides by y=uvw:

    dydx=uvw(1ududx+1vdvdx+1wdwdx)

    Distribute:

    dydx=vwdudx+uwdvdx+uvdwdx

    Final Answer

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    This verifies the required identity by both methods.

    Conclusion

    Yes, both methods give the same derivative result:

    ddx(uvw)=uvw+uvw+uvw

     

     

     

     

     

  • Exercise-5.4, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the following w.r.t. x:

    Question 1

    Differentiate:

    y=exsinxSolution

    This is a quotient, so use the Quotient Rule:

    ddx(uv)=vuuvv2

    Let:

    u=ex,v=sinx

    Then:

    u=ex,v=cosx

    Apply the rule:

    dydx=sinxexexcosx(sinx)2

    Factor out ex:

    dydx=ex(sinxcosx)sin2xFinal Answer

    dydx=ex(sinxcosx)sin2x


    Question 2

    Differentiate w.r.t. x:

    y=esin1xSolution

    Let:

    y=esin1x

    Use the chain rule:

    dydx=esin1xddx(sin1x)

    We know:

    ddx(sin1x)=11x2

    Therefore:

    dydx=esin1x11x2Final Answer

    dydx=esin1x1x2


    Question 3

    Differentiate:

    y=ex3Solution

    Use the chain rule:

    Let:

    y=eu,u=x3

    Then:

    dydu=eu,dudx=3x2

    Apply chain rule:

    dydx=eu3x2

    Substitute u=x3:

    dydx=3x2ex3Final Answer

    dydx=3x2ex3


    Question 4

    Differentiate with respect to x:

    y=sin(tan1(ex))Solution

    Let:

    u=tan1(ex)

    So:

    y=sin(u)

    Step 1: Differentiate outer function

    dydu=cosu

    Step 2: Differentiate inner function

    u=tan1(ex)

    Derivative of tan1t is 11+t2t

    So,

    dudx=11+(ex)2ddx(ex)

    dudx=11+e2x(ex)

    Step 3: Apply chain rule

    dydx=cos(u)dudx

    dydx=cos(tan1(ex))(ex1+e2x)

    We know the identity:

    cos(tan1t)=11+t2

    So:

    cos(tan1(ex))=11+e2x

    Final Simplified Answer

    dydx=ex(1+e2x)3/2Final Answer

    dydx=ex(1+e2x)3/2


    Question 5

    Differentiate w.r.t. x:

    y=log(cos(ex))Solution

    Use the chain rule multiple times.

    Let:

    y=log(cos(ex))

    Step 1: Differentiate outer logarithm

    dydx=1cos(ex)ddx(cos(ex))

    Step 2: Differentiate cos(ex)

    ddx(cos(ex))=sin(ex)ddx(ex)
    =sin(ex)ex

    Combine the results

    dydx=1cos(ex)(exsin(ex))
    dydx=exsin(ex)cos(ex)Final Answer

    dydx=extan(ex)


    Question 6

    Differentiate w.r.t. x:

    y=ex+ex2+ex3+ex4+ex5

    Solution

    Differentiate term-by-term:

        1. ddx(ex)=ex

       2. ddx(ex2)=ex2ddx(x2)=ex22x

       3. ddx(ex3)=ex3ddx(x3)=ex33x2

       4. ddx(ex4)=ex4ddx(x4)=ex44x3

       5. ddx(ex5)=ex5ddx(x5)=ex55x4

    Final Answer

    dydx=ex+2xex2+3x2ex3+4x3ex4+5x4ex5


    Question 7

    Differentiate w.r.t. x:

    y=ex,x>0Solution

    Rewrite the function:

    y=(ex)1/2=e12x

    Let:u=12x=12x1/2

    So:

    y=eu

    Differentiate

    dydu=eu
    dudx=1212x1/2=14x

    Apply chain rule:

    dydx=eududx

    dydx=e12x14xFinal Answer

    dydx=e12x4x,x>0


    Question 8

    Differentiate w.r.t. x:

    y=log(logx),x>1Solution

    This is a composition of two logarithmic functions, so apply the chain rule.

    Let:

    u=logx
    y=logu

    Differentiate step-by-step

    dydu=1u
    dudx=1x

    Apply chain rule

    dydx=dydududx
    dydx=1logx1xFinal Answer

    dydx=1xlogx,x>1


    Question 9

    Differentiate w.r.t. x:

    y=cosxlogx,x>0Solution

    This is a quotient, so apply the Quotient Rule:

    ddx(uv)=vuuvv2Let:

    u=cosx,v=logxThen:

    u=sinx

    v=1x

    Apply quotient rule

    dydx=(logx)(sinx)(cosx)(1x)(logx)2
    dydx=sinxlogxcosxx(logx)2Final Answer

    dydx=sinxlogxcosxx(logx)2,x>0


    Question 10

    Differentiate w.r.t. x:

    y=cos(logx+ex),x>0Solution

    Use the chain rule.

    Let:

    u=logx+exSo:

    y=cos(u)

    Differentiate outer function

    dydu=sin(u)

    Differentiate inner function

    dudx=ddx(logx)+ddx(ex)=1x+ex

    Apply chain rule

    dydx=sin(u)(1x+ex)

    Substitute back u=logx+ex:

    Final Answer

    dydx=sin(logx+ex)(1x+ex),x>0

     

     

  • Exercise-5.3, Class 12th, Maths, Chapter 5, NCERT

    Find ddin the following:

    Question 1

    Differentiate:

    2x+3y=sinx

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(sinx)

    2+3dydx=cosx

    Now solve for dydx:

    3dydx=cosx2

    dydx=cosx23


    Question 2

    Differentiate:

    2x+3y=siny

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(siny)
    2+3dydx=cosydydx

    (using chain rule on siny)

    Now collect dydx terms on one side:

    3dydxcosydydx=2

    Factor out dydx:

    dydx(3cosy)=2

    So,

    dydx=23cosy


    Question 3

    Find dydx if:

    ax+by2=cosy

    Solution

    Differentiate both sides with respect to x:

    ddx(ax)+ddx(by2)=ddx(cosy)

    Differentiate term by term

    a+b2ydydx=sinydydx

    (using chain rule on cos y)

    So,

    a+2bydydx=sinydydx

    Move all dydx terms to one side:

    2bydydx+sinydydx=a

    Factor out dydx:

    dydx(2by+siny)=a

    Final Answer

    dydx=a2by+siny


    Question 4

    Find dydx if:

    xy+y2=tanx+y

    Solution

    Differentiate both sides w.r.t. x:

    ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

    Differentiate term by term

    1. ddx(xy)=xdydx+y
      (product rule)

    2. ddx(y2)=2ydydx

    3. ddx(tanx)=sec2x

    4. ddx(y)=dydx


    Substitute all derivatives

    xdydx+y+2ydydx=sec2x+dydx

    Collect dydx terms on one side:

    xdydx+2ydydxdydx=sec2xy

    Factor out dydx:

    dydx(x+2y1)=sec2xy

    Final Answer

    dydx=sec2xyx+2y1


    Find ddin the following:

    Question 1

    Differentiate:

    2x+3y=sinx

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(sinx)

    2+3dydx=cosx

    Now solve for dydx:

    3dydx=cosx2

    dydx=cosx23


    Question 2

    Differentiate:

    2x+3y=siny

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(siny)
    2+3dydx=cosydydx

    (using chain rule on siny)

    Now collect dydx terms on one side:

    3dydxcosydydx=2

    Factor out dydx:

    dydx(3cosy)=2

    So,

    dydx=23cosy


    Question 3

    Find dydx if:

    ax+by2=cosy

    Solution

    Differentiate both sides with respect to x:

    ddx(ax)+ddx(by2)=ddx(cosy)

    Differentiate term by term

    a+b2ydydx=sinydydx

    (using chain rule on cos y)

    So,

    a+2bydydx=sinydydx

    Move all dydx terms to one side:

    2bydydx+sinydydx=a

    Factor out dydx:

    dydx(2by+siny)=a

    Final Answer

    dydx=a2by+siny


    Question 4

    Find dydx if:

    xy+y2=tanx+y

    Solution

    Differentiate both sides w.r.t. x:

    ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

    Differentiate term by term

    1. ddx(xy)=xdydx+y
      (product rule)

    2. ddx(y2)=2ydydx

    3. ddx(tanx)=sec2x

    4. ddx(y)=dydx


    Substitute all derivatives

    xdydx+y+2ydydx=sec2x+dydx

    Collect dydx terms on one side:

    xdydx+2ydydxdydx=sec2xy

    Factor out dydx:

    dydx(x+2y1)=sec2xy

    Final Answer

    dydx=sec2xyx+2y1


    Question 5

    Find dydx if:

    x2+xy+y2=100

    Solution

    Differentiate both sides with respect to x:

    ddx(x2)+ddx(xy)+ddx(y2)=ddx(100)

    Now apply differentiation rules:

    Term-by-term differentiation

    1. ddx(x2)=2x

    2. ddx(xy)=xdydx+y

    3. (product rule)

    4. ddx(y2)=2ydydx

    5. ddx(100)=0

    Substitute into the equation

    2x+(xdydx+y)+2ydydx=0

    Group dydx terms:

    xdydx+2ydydx=2xy

    Factor out dydx:

    dydx(x+2y)=2xy

    Final Answer

    dydx=2xyx+2y


    Question 6

    Find dydx if:

    x3+x2y+xy2+y3=81

    Solution

    Differentiate both sides with respect to x:

    ddx(x3)+ddx(x2y)+ddx(xy2)+ddx(y3)=ddx(81)

    Differentiate term-by-term

    1. ddx(x3)=3x2

    2. ddx(x2y)=2xy+x2dydx
      (product rule)

    3. ddx(xy2)=y2+2xydydx
      (product rule)

    4. ddx(y3)=3y2dydx
      (chain rule)

    5. ddx(81)=0

    Substitute everything back

    3x2+2xy+x2dydx+y2+2xydydx+3y2dydx=0

    Group the terms containing dydx:

    x2dydx+2xydydx+3y2dydx=3x22xyy2

    Factor out dydx:

    dydx(x2+2xy+3y2)=(3x2+2xy+y2)

    Final Answer

    dydx=3x2+2xy+y2x2+2xy+3y2


    Question 7

    Find dydx if:

    sin2y+cosxy=kSolution

    Differentiate both sides with respect to x:

    ddx(sin2y)+ddx(cosxy)=ddx(k)

    Differentiate term by term

          1. sin2y

    Let u=siny, so expression = u2

    ddx(sin2y)=2sinycosydydx

    (because ddx(siny)=cosydydx

    So:2sinycosydydx

         2. cos(xy)

    Apply chain rule and product rule inside:

    Derivative of cosA is sinA:

    ddx(cos(xy))=sin(xy)ddx(xy)

    Now:

    ddx(xy)=xdydx+y

    (using product rule)

    So:

    ddx(cos(xy))=sin(xy)(xdydx+y)

    Right-hand side

    ddx(k)=0

    Combine all results

    2sinycosydydxsin(xy)(xdydx+y)=0

    Expand:

    2sinycosydydxxsin(xy)dydxysin(xy)=0

    Group the terms with dydx:

    dydx(2sinycosyxsin(xy))=ysin(xy)

    Final Answer

    dydx=ysin(xy)2sinycosyxsin(xy)


    Question 8

    Find dydx if:

    sin2x+cos2y=1

    Solution

    Differentiate both sides with respect to x:

    ddx(sin2x)+ddx(cos2y)=ddx(1)

    Differentiate term by term

    1. sin2x

    Let u=sinx, then u2=sin2x

    ddx(sin2x)=2sinxcosx

        2. cos2y

    Let v=cosy, so v2=cos2y

    ddx(cos2y)=2cosy(siny)dydx

    (using chain rule: derivative of cosy is sinydydx)

    So:

    ddx(cos2y)=2cosysinydydx

    Right-hand side

    ddx(1)=0

    Put everything together

    2sinxcosx2cosysinydydx=0

    Move the second term to the other side:

    2sinxcosx=2cosysinydydx

    Divide both sides by 2cosysiny:

    dydx=sinxcosxcosysiny

    Final Answer

    dydx=sinxcosxsinycosy


    Question 9

    Find dydx if:

    y=sin1(2x1+x2)

    Solution

    Let:y=sin1(2x1+x2)

    We know the identity:

    sin(2θ)=2tanθ1+tan2θComparing:

    2x1+x2=sin(2θ)if x=tanθSo let:x=tanθθ=tan1x

    Then:y=sin1(sin(2θ))=2θ=2tan1x

    Now differentiate:

    y=2tan1x

    dydx=211+x2

    21+x2


    Question 10

    Find dydx if:

    y=tan1(3xx313x2),13<x<13

    Solution

    We use the trigonometric identity:

    tan(3θ)=3tanθtan3θ13tan2θ

    Compare with the given expression:

    3xx313x2=tan(3θ)if x=tanθ

    So let:

    x=tanθθ=tan1x

    Then:y=tan1(tan(3θ))=3θ=3tan1x

    The given interval:13<x<13ensures:

    x<13θ<π63θ<π2

    Thus, tan1(tan(3θ))=3θ is valid (i.e., no ambiguity or discontinuity).

    Differentiate

    y=3tan1x
    dydx=311+x2Final Answer

    dydx=31+x2,13<x<13


    Question 11

    Find dydx if:

    y=cos1(1x21+x2),0<x<1Solution

    Let:

    y=cos1(1x21+x2)

    We use a trigonometric substitution.

    Let:

    x=tanθθ=tan1x

    Compute the inside expression:

    1x21+x2=1tan2θ1+tan2θ

    We know the identity:

    cos(2θ)=1tan2θ1+tan2θ

    Thus:

    1x21+x2=cos(2θ)

    So:y=cos1(cos(2θ))=2θ

    Since 0<x<10<θ<π4, thus 0<2θ<π2, ensuring the inverse cosine gives principal value.

    Therefore:

    y=2θ=2tan1x

    Differentiate

    dydx=211+x2

    Final Answer

    dydx=21+x2,0<x<1


    Question 12

    Find dydx if:

    y=sin1(1x21+x2),0<x<1Solution

    Let:

    y=sin1(1x21+x2)

    We use trigonometric substitution similar to the previous problem.

    Let:

    x=tanθθ=tan1x

    Then:

    1x21+x2=1tan2θ1+tan2θ

    Using the identity:

    cos(2θ)=1tan2θ1+tan2θ

    So:y=sin1(cos(2θ))

    We also know:

    cos(2θ)=sin(π22θ)

    Thus:y=sin1(sin(π22θ))=π22θ

    Since 0<x<1, 0<θ<π4, so:

    0<2θ<π2π22θπ2

    Hence the principal value is correct.

    Differentiate

    y=π22θ=π22tan1x

    dydx=211+x2Final Answer

    dydx=21+x2,0<x<1


    Question 13

    y=cos1(2x1+x2),1<x<1

    Now we will solve this correctly.

    Solution

    Let:

    y=cos1(2x1+x2)

    Use substitution:

    x=tanθθ=tan1x

    Then:

    2x1+x2=2tanθ1+tan2θ

    We know the identity:

    sin(2θ)=2tanθ1+tan2θ

    So:

    2x1+x2=sin(2θ)

    Thus:

    y=cos1(sin(2θ))

    We also know:sin(2θ)=cos(π22θ)

    So:y=π22θ=π22tan1x

    Differentiate

    y=π22tan1x

    dydx=211+x2Final Answer

    dydx=21+x2,1<x<1


    Question 14

    Find dydx if:

    y=sin1(2x1x2),12<x<12Solution

    Let:y=sin1(2x1x2)

    We use a substitution to simplify.

    Let:

    x=sinθθ=sin1x

    Then:

    1x2=1sin2θ=cosθ

    So:

    2x1x2=2sinθcosθ=sin(2θ)

    Thus:y=sin1(sin(2θ))=2θ

    The given interval:

    12<x<12

    gives:

    π4<θ<π42θ<π2

    Therefore:y=2θ=2sin1x

    Differentiate

    y=2sin1x

    dydx=211x2Final Answer

    dydx=21x2,12<x<12


    Question 15

    Find dydx if:

    y=sec1(12x21),0<x<12Solution

    Let:

    y=sec1(u),where u=12x21

    We know:

    ddx(sec1u)=1uu21dudx

    Step 1: Differentiate the inside function

    u=12x21=(2x21)1

    dudx=1(2x21)2(4x)=4x(2x21)2

    Step 2: Apply inverse secant derivative formula

    dydx=112x21(12x21)21(4x(2x21)2)

    Since 0<x<12, we have 2x21<0, so:

    12x21=12x21

    Thus:

    dydx=(2x211)11(2x21)2(2x21)2(4x(2x21)2)

    Simplify inner root:

    1(2x21)2=1(4x44x2+1)=4x24x4=4x2(1x2)

    So:

    4x2(1x2)(2x21)2=2x1x22x21

    Since 2x21<0, 2x21=12x2:

    4x2(1x2)(2x21)2=2x1x212x2

    Final Simplification

    dydx=4x(2x21)2(2x21)2x1x212x2
    dydx=4x(2x21)12x1x2

    Cancel x:

    dydx=4(2x21)121x2

    dydx=2(2x21)1x2,0<x<12Final Answer

    dydx=2(2x21)1x2

     

     

  • Exercise-5.2, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the functions with respect to x in Exercises 1 to 8.

    1. Differentiate: sin(x2+5) with respect to x.


    Solution

    We need to differentiate the function:

    y=sin(x2+5)

    This is a composite function, so we will apply the Chain Rule

    Let:

    u=x2+5y=sin(u)

    Differentiate both:

    dydu=cos(u)dudx=2x

    Now apply Chain Rule:

    dydx=dydududx
    dydx=cos(u)2x

    Substitute u=x2+5:

    dydx=2xcos(x2+5)


    Question 2

    Differentiate with respect to x:

    cos(sinx)

    Solution

    Given:

    y=cos(sinx)

    This is a composite function, where:

    u=sinxy=cos(u)

    Now differentiate step-by-step:

    Step 1: Differentiate outer function

    dydu=sin(u)

    Step 2: Differentiate inner function

    dudx=cosx

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))cosx

    Substitute back u=sinx:

    dydx=sin(sinx)cosx


    Question 3

    Differentiate with respect to x:

    sin(ax+b)

    Solution

    Let:

    y=sin(ax+b)

    This is again a composite function, so we apply the Chain Rule.

    Step 1:

    Let the inner function:

    u=ax+b

    Then,

    y=sin(u)

    Step 2: Differentiate

    dydu=cos(u)
    dudx=a

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=cos(u)a

    Substitute u=ax+b:

    dydx=acos(ax+b)


    Question 4

    Differentiate with respect to x:

    ddx[sec(tan(x))

    Solution

    Let:

    u=tan(x)

    y=sec(u)

    Differentiate outer function

    dydu=sec(u)tan(u)

    Differentiate inner function

    u=tan(v),where v=x

    dudv=sec2(v)

    Differentiate 

    v=x
    dvdx=12x

    Apply Chain Rule

    dydx=dydududvdvdx
    dydx=sec(u)tan(u)sec2(v)12x

    Substitute u=tan(x), v=x:

    Final Answer

    ddx[sec(tan(x))]=12x  sec(tan(x))  tan(tan(x))  sec2(x)


    Question 5

    Differentiate with respect to x:

    sin(ax+b)cos(cx+d)Solution

    Let:y=sin(ax+b)cos(cx+d)

    This is a quotient, so we use the Quotient Rule:

    dydx=vdudxudvdxv2

    where

    u=sin(ax+b),v=cos(cx+d)

    Step 1: Differentiate u

    dudx=cos(ax+b)a

    Step 2: Differentiate v

    dvdx=sin(cx+d)c

    Step 3: Apply Quotient Rule

    dydx=cos(cx+d)(acos(ax+b))sin(ax+b)(csin(cx+d))cos2(cx+d)

    Simplify the numerator:

    =acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)

    Final Answer

    ddx(sin(ax+b)cos(cx+d))=acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)


    Question 6

    Differentiate with respect to x:

    cos(x3)sin2(x5)

    Solution

    The given function is a product, so we apply the Product Rule:

    ddx(uv)=uv+uv

    Let:

    u=cos(x3)
    v=sin2(x5)

    Step 1: Differentiate u=cos(x3)

    Using chain rule:

    u=sin(x3)3x2

    u=3x2sin(x3)

    Step 2: Differentiate v=sin2(x5)

    Rewrite:

    v=(sin(x5))2

    Let t=sin(x5), then v=t2

    dvdt=2t=2sin(x5)

    dtdx=cos(x5)5x4

    So,

    v=2sin(x5)5x4cos(x5)
    v=10x4sin(x5)cos(x5)

    Step 3: Apply Product Rule

    dydx=uv+uv

    Substitute:

    dydx=(3x2sin(x3))sin2(x5)+cos(x3)10x4sin(x5)cos(x5)

    Final Answer

    ddx[cos(x3)sin2(x5)]=3x2sin(x3)sin2(x5)+10x4cos(x3)sin(x5)cos(x5)


    Let’s differentiate step by step.


    Question 7

    y=2cot(x2)

    Rewrite using exponent form:

    y=2(cot(x2))1/2Solution

    Let:

    u=cot(x2)
    y=2u1/2

    Step 1: Differentiate outer function

    dydu=212u1/2=u1/2

    Step 2: Differentiate inner function

    u=cot(x2)

    Derivative of cott is csc2t

    So, by chain rule:

    dudx=csc2(x2)2x

    Apply Chain Rule

    dydx=dydududx

    dydx=u1/2(2xcsc2(x2))

    Substitute back u=cot(x2):

    dydx=2xcsc2(x2)(cot(x2))1/2

    Rewrite using square root:

    dydx=2xcsc2(x2)cot(x2)

    Final Answer

    ddx[2cot(x2)]=2xcsc2(x2)cot(x2)


    Question 8

    Differentiate with respect to x:

    cos(x)Solution

    Let:y=cos(x)

    This is a composite function, so we will apply the Chain Rule.

    Step 1: Identify inner and outer functions

    u=x=x1/2
    y=cos(u)

    Step 2: Differentiate each part

    dydu=sin(u)

    dudx=12x

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))12x

    Substitute u=x:

    Final Answer

    ddx[cos(x)]=sin(x)2x


    Question 9

    Prove that the function

    f(x)=x1,  xR

    is not differentiable at x=1.

    Solution

    First, write the function in piecewise form:

    f(x)={1x,if x<1x1,if x>1

    Also,

    f(1)=11=0

    To check differentiability at x=1, evaluate the left-hand derivative and the right-hand derivative.

    Left-hand derivative (LHD) at x=1

    For x<1, f(x)=1x

    ddx(1x)=1So,

    LHD at x=1=limh0f(1+h)f(1)h=1

    Right-hand derivative (RHD) at x=1

    For x>1, f(x)=x1

    ddx(x1)=1

    So,

    RHD at x=1=limh0+f(1+h)f(1)h=1

    Conclusion

    LHD=1,RHD=1

    Since:LHDRHD

      f(x)=x1 is not differentiable at x=1.

    Reason

    The graph of x1 has a sharp corner (cusp) at x=1, which makes the slope undefined there.


    Question 10

    Prove that the greatest integer function defined by

    f(x)=[x],0<x<3

    is not differentiable at x=1 and x=2.

    Solution:

    Understanding the function

    The function [x] defines the greatest integer less than or equal to x.

    For 0<x<3, the function behaves as follows:

    f(x)={0,0<x<11,1<x<22,2<x<3

    Continuity & Differentiability at x=1

    Left-hand limit approaching 1:

    For x<1, f(x)=0

    limx1f(x)=0

    Right-hand limit approaching 1:

    For x>1, f(x)=1

    limx1+f(x)=1

    Since

    limx1f(x)limx1+f(x),
    f(x) is discontinuous at x=1.Differentiability result

    A function must be continuous at a point to be differentiable there.

    Since f(x) is not continuous at x=1, it cannot be differentiable at x=1.

    f(x) is not differentiable at x=1.

    Similarly at x=2

    Left-hand limit approaching 2

    For x<2, f(x)=1

    limx2f(x)=1

    Right-hand limit approaching 2

    For x>2, f(x)=2

    limx2+f(x)=2

    Since

    limx2f(x)limx2+f(x),
    f(x) is discontinuous at x=2.Thus,

    f(x) is not differentiable at x=2.


  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 25

    Examine the continuity of the function

    f(x)={sinxcosx,if x01,if x=0

    Answer

    We are given the function:

    f(x)={sinxcosx,x01,x=0

    We need to examine the continuity at x=0.


    Step 1: Value of the function at x=0

    f(0)=1


    Step 2: Find the limit of f(x)as x0

    limx0(sinxcosx)

    We know standard limits:

    sin0=0,cos0=1

    So,

    limx0(sinxcosx)=01=1

    Step 3: Compare Limit and Function Value

    Expression Value
    limx0f(x) 1
    f(0) 1

    Both values are equal.

    Conclusion

    Since:

    limx0f(x)=f(0)The function f(x) is continuous at x=0.


    Question 26

    Find the value of k so that the function f is continuous at x=π2:

    f(x)={kcosxπ2x,xπ23,x=π2

    Solution

    For continuity at x=π2, we need:

    limxπ2f(x)=f(π2)

    Given:

    f(π2)=3

    Now compute the limit:

    limxπ2kcosxπ2x

    Substitute x=π2:

    kcos(π2)π2(π2)=k(0)0

    This is the indeterminate form 00, so apply L’Hôpital’s Rule.

    Differentiate numerator and denominator:

    limxπ2ksinx2=limxπ2ksinx2

    Now substitute x=π2:

    ksin(π2)2=k(1)2=k2

    For continuity:k2=3
    k=6

    Final Answer

    k=6


    Question 27

    Find the value of k so that the function f is continuous at x=2:

    f(x)={kx2,x23,x>2

    Solution

    For continuity at x=2:

    limx2f(x)=f(2)

    Step 1: Value at the point

    f(2)=k(22)=4k

    Step 2: Limit as x2

    Since the function changes definition at x=2, we use left-hand limit (LHL) and right-hand limit (RHL):

    Left-hand limit (LHL)

    limx2f(x)=limx2kx2=k(22)=4k

    Right-hand limit (RHL)

    limx2+f(x)=limx2+3=3

    Condition for continuity

    LHL=RHL=f(2)

    So,4k=3

    k=34

    Final Answer

    k=34

    Thus, the function is continuous at x=2 when k=34.


    Question 28

    Find the value of k so that the function f is continuous at x=π:

    f(x)={kx+1,xπcosx,x>π

    Solution

    For continuity at x=π, we require:

    limxπf(x)=f(π)

    Step 1: Value of the function at x=π

    Since x=π falls in the first part (xπ):

    f(π)=kπ+1Step 2: Left-hand limit (LHL)

    limxπf(x)=limxπ(kx+1)=kπ+1

    Step 3: Right-hand limit (RHL)

    limxπ+f(x)=limxπ+cosx=cosπ
    cosπ=1

    Condition for Continuity

    LHL=RHL=f(π)
    kπ+1=1

    Solve for k

    kπ=11=2

    k=2π


    Question 29

    Find the value of k so that the function f is continuous at x=5:

    f(x)={kx+1,x53x5,x>5

    Solution

    For continuity at x=5, we need:

    limx5f(x)=f(5)

    Step 1: Function value at the point

    Since x5:

    f(5)=k(5)+1=5k+1

    Step 2: Left-hand limit (LHL) as x5

    limx5f(x)=limx5(kx+1)=5k+1

    Step 3: Right-hand limit (RHL) as x5+

    limx5+f(x)=limx5+(3x5)=3(5)5=155=10

    Step 4: Apply continuity condition

    LHL=RHL=f(5)
    5k+1=10

    5k=9

    k=95


    Question 30

    Find the values of a and b such that the function

    f(x)={5,x2ax+b,2<x<1021,x10

    is continuous.

    Solution

    For continuity, the function must be continuous at:

    • x=2 (where left part meets the middle part)

    • x=10 (where middle part meets the right part)

    Continuity at x=2

    limx2f(x)=f(2)=5
    limx2+f(x)=a(2)+b=2a+b

    For continuity:

    2a+b=5(Equation 1)

    Continuity at x=10

    limx10f(x)=a(10)+b=10a+b
    f(10)=21

    For continuity:

    10a+b=21(Equation 2)

    Solve Equations (1) and (2)

    2a+b=5
    10a+b=21

    Subtract (1) from (2):

    (10a+b)(2a+b)=215
    8a=16

    a=2

    Substitute a=2 into Equation (1):

    2(2)+b=5

    4+b=5

    b=1


    Question 31

    Show that the function

    f(x)=cos(x2)

    is a continuous function.

    Solution

    We know that:

    • x2 is a polynomial → continuous everywhere

    • cosx is a continuous function for all real numbers

    A composition of two continuous functions is also continuous.

    Here,

    f(x)=cos(x2)=cos[g(x)]where g(x)=x2

    Since both g(x) and cosx are continuous, therefore:

    f(x)=cos(x2) is continuous for all xR

    Answer:

    cos(x2) is continuous everywhere.


    Question 32

    Show that the function

    f(x)=cosx

    is a continuous function.

    Solution

    • cosx is continuous for all real numbers

    • The absolute value function x is also continuous

    • The composition of continuous functions is continuous

    f(x)=cosx=g(x),where g(x)=cosx

    Since both g(x) and x are continuous,

    f(x)=cosx is continuous for all x

    Answer:

    cosx is continuous for all real x.


    Question 33

    Examine whether

    f(x)=sinx

    is a continuous function.

    Solution

    • x is continuous for all real numbers

    • sinx is continuous for all real numbers

    • Composition of continuous functions is continuous

    Thus:

    f(x)=sin(x)=sin(g(x)),g(x)=x

    Since both are continuous,

    sinx is continuous for all x

    Answer:

    sinx is continuous everywhere.


    Question 34

    Find all the points of discontinuity of

    f(x)=xx+1

    Solution

    Check where each absolute expression changes form.

    Break points occur where inside values become zero:

    x=0andx=1

    So evaluate function in intervals:

    Case 1: x<1

    x=x,x+1=(x+1)
    f(x)=x((x+1))=x+x+1=1

    Case 2: 1x<0

    x=x,x+1=x+1
    f(x)=x(x+1)=2x1

    Case 3: x0

    x=x,x+1=x+1
    f(x)=x(x+1)=1

    Check continuity at critical points

    At x=1

    limx1f(x)=1
    limx1+f(x)=2(1)1=21=1
    f(1)=2(1)1=1

    So continuous at x=1


    At x=0

    limx0f(x)=2(0)1=1
    limx0+f(x)=1
    f(0)=1

    So continuous at x=0


    Final Answer

    The function f(x)=xx+1 is continuous everywhere.

  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 13.

    Is the function defined by

    f(x)={x+5,if x1x5,if x>1

    a continuous function?

    Answer

    To check the continuity of the function at x=1, evaluate the following:

    Value of the function at x=1

    Since x1:

    f(1)=1+5=6

    Left-hand limit (LHL) as x1

    limx1(x+5)=6

    Right-hand limit (RHL) as x1+

    limx1+(x5)=4

    Comparison

    LHL=6,RHL=4,f(1)=6

    Since

    LHLRHL

    Final Answer

    The function is not continuous at x=1 because the left-hand limit and right-hand limit are not equal.


    Discuss the continuity of the function f, where f is defined by

    Question 14.

    Discuss the continuity of the function

    f(x)={3,if 0x14,if 1<x<35,if 3x10

    Answer

    To check continuity, we examine the points where the definition of the function changes:
    at x=1 and x=3.

    Continuity on the intervals

    • On [0,1]: f(x)=3 (a constant function → continuous).

    • On (1,3): f(x)=4 (constant function → continuous).

    • On [3,10]: f(x)=5 (constant function → continuous).

    So the only possible discontinuities are at the endpoints where the pieces join.


    Check continuity at x=1

    Left-hand limit (as x1)

    limx1f(x)=3

    Right-hand limit (as x1+)

    limx1+f(x)=4

    Value of the function

    f(1)=3

    Since

    limx1f(x)=3andlimx1+f(x)=4

    Left-hand limit ≠ Right-hand limit
    function is discontinuous at x=1


    Check continuity at x=3

    Left-hand limit (as x3)

    limx3f(x)=4

    Right-hand limit (as x3+)

    limx3+f(x)=5

    Value of the function

    f(3)=5

    Since

    45

    function is discontinuous at x=3.


    Final Conclusion

    The function f(x) is:

    • Continuous on each open interval (0,1), (1,3), and (3,10)

    • Discontinuous at the points x=1 and x=3


    Question 15

    Discuss the continuity of the function f defined by:

    f(x)={2x,if x<00,if 0<x<14x,if x>1

    Answer

    This is a piecewise function, and we need to check continuity at the points where the definition changes, i.e., at x=0 and x=1.


    Continuity for x<0, 0<x<1, and x>1

    In each interval, the function is a polynomial (linear function), and polynomials are continuous everywhere.
    So, f(x) is continuous within each interval.


    Check continuity at x=0

    Left-hand limit (LHL) as x0

    Using 2x:

    limx0f(x)=limx02x=0

    Right-hand limit (RHL) as x0+

    Using 0:

    limx0+f(x)=0

    Value of the function at x=0

    Notice: The function definition does not include x=0 in any case, so:

    f(0) does not exist

    Conclusion at x=0

    Even though

    LHL=RHL=0,

    the value of the function at x=0 is not defined.
    So, the function is not continuous at x=0.


    Check continuity at x=1

    Left-hand limit (LHL) as x1

    Using 0:

    limx1f(x)=0

    Right-hand limit (RHL) as x1+

    Using 4x:

    limx1+f(x)=4(1)=4

    Value of the function at x=1

    Not defined in any case, so:

    f(1) does not exist

    Conclusion at x=1

    Since

    LHL=04=RHL

    The limit does not exist. Therefore, the function is not continuous at x=1.

    Final Conclusion

    The function f(x) is:

    • Continuous within each open interval (,0), (0,1), and (1,)

    • Not continuous at x=0 (because f(0) is not defined)

    • Not continuous at x=1 (because left-hand and right-hand limits are not equal and f(1) is not defined)


    Question 16

    Discuss the continuity of the function f(x), where

    f(x)={2,if x12x,if 1<x12,if x>1

    Answer:

    To check continuity, we must examine the possible points of discontinuity—here the function changes its definition at x=1 and x=1.
    So, we check continuity at these points.


    Continuity at x=1

    Value of the function at x=1

    Since x1:

    f(1)=2

    Left-hand limit (LHL) as x1

    Using 2:

    limx1f(x)=2

    Right-hand limit (RHL) as x1+

    Using 2x:

    limx1+2x=2(1)=2

    Conclusion

    LHL=RHL=f(1)=2

    So, the function is continuous at x=1.


    Continuity at x=1

    Value of the function at x=1

    Using 2x:

    f(1)=2(1)=2

    Left-hand limit (LHL) as x1

    Using 2x:

    limx12x=2

    Right-hand limit (RHL) as x1+

    Using constant 2:

    limx1+f(x)=2

    Conclusion

    LHL=RHL=f(1)=2

    Thus, the function is continuous at x=1.


    Final Conclusion

    Since the function is continuous at both points where it changes its definition (x=1 and x=1), and there are no other breaks, gaps, or jumps:

    The function f(x) is continuous for all real values of x.

    Question 17

    Find the relationship between a and b so that the function f(x) defined by

    f(x)={ax+1,if x3bx+3,if x>3

    is continuous at x=3.

    Answer

    To ensure continuity at x=3, we require:

    Left-hand limit=Right-hand limit=f(3)

    Value of the function at x=3

    Using the first expression since x3:

    f(3)=a(3)+1=3a+1

    Left-hand Limit (LHL) as x3

    limx3f(x)=3a+1

    Right-hand Limit (RHL) as x3+

    Using bx+3:

    limx3+f(x)=b(3)+3=3b+3

    Condition for continuity

    3a+1=3b+3

    Solving

    3a3b=2
    ab=23

    Final Answer

    ab=23

    This is the required relationship between a and b for f(x) to be continuous at x=3.


    Question 18

    For what value of λ is the function defined by

    f(x)={λ(x22x),if x04x+1,if x>0

    continuous at x=0? What about at x=1?

    Answer

    Checking continuity at x=0

    Value of the function at x=0

    Since x0:

    f(0)=λ(0220)=λ(0)=0

    Left-hand limit (LHL)

    limx0λ(x22x)=λ(00)=0

    Right-hand limit (RHL)

    limx0+(4x+1)=4(0)+1=1

    Condition for continuity

    LHL=RHL=f(0)

    So,

    0=1

    This statement is never true, so no real value of λ can make the function continuous at x=0.


    Checking continuity at x=1

    At x=1, the value is taken from the second piece 4x+1, and there is no matching left-hand expression at 1, since the first part ends at x=0.
    Thus, the function is not defined in a neighborhood around 1 from the left side.

    Therefore, the function cannot be continuous at x=1.


    Final Conclusion

    There is no value of λ that makes the function continuous at x=0.
    The function is not continuous at x=1 because continuity cannot be checked.


    Question 19

    Show that the function g(x)=x[x] is discontinuous at all integral points.
    Here [x] denotes the greatest integer less than or equal to x.

    Answer

    Given Function

    g(x)=x[x]

    The expression x[x] represents the fractional part of x, denoted as {x}.
    Thus,

    g(x)={x}

    The fractional part function always satisfies:

    0{x}<1

    To show discontinuity at integer points

    Let x=n, where n is any integer.


    Left-hand limit (LHL) as xn

    When x approaches n from the left, x=nh where h0+.
    Then the greatest integer function gives:

    [x]=n1

    So,

    g(x)=x[x]=(nh)(n1)=1h

    Taking limit,

    limxng(x)=limh0+(1h)=1

    Right-hand limit (RHL) as xn+

    When approaching from the right, x=n+h, h0+, then

    [x]=n

    So,

    g(x)=(n+h)n=h

    Taking limit,

    limxn+g(x)=limh0+h=0


    Value of the function at x=n

    g(n)=n[n]=nn=0

    Comparison

    limxng(x)=1,limxn+g(x)=0,g(n)=0

    Since,

    limxng(x)limxn+g(x)

    The limit does not exist at x=n, and therefore, the function is discontinuous at every integer n.

    Final Conclusion

    g(x)=x[x] is discontinuous at all integral points.


    Question 20

    Is the function defined by

    f(x)=x2sinx+5

    continuous at x=π?

    Answer

    The function f(x)=x2sinx+5 is composed of the following functions:

    • x2 → a polynomial function (continuous for all real x)

    • sinx → a trigonometric function (continuous for all real x)

    • Constant 5 → continuous everywhere

    The sum or difference of continuous functions is also continuous for all real numbers.

    Therefore, f(x) is continuous everywhere, including at x=π.


    Check using limits

    Value at x=π:

    f(π)=π2sinπ+5=π20+5=π2+5

    Limit as xπ:

    limxπf(x)=limxπ(x2sinx+5)=π20+5=π2+5

    Comparison

    limxπf(x)=f(π)

    So the function is continuous at x=π.

    Final Answer

    Yes, the function is continuous at x=π.


    Question 21

    Discuss the continuity of the following functions:

    (a) f(x)=sinx+cosx
    (b) f(x)=sinxcosx
    (c) f(x)=sinxcosx


    Answer

    To discuss continuity, recall that:

    • sinx and cosx are continuous functions for all real values of x.

    • Sum, difference, and product of continuous functions are also continuous.

    So, we analyze each function:

    (a) f(x)=sinx+cosx

    • sinx is continuous for all xR

    • cosx is continuous for all xR

    The sum of two continuous functions is continuous.

    Conclusion

    f(x)=sinx+cosx is continuous for all real x.

    (b) f(x)=sinxcosx

    • Difference of continuous functions remains continuous.

    Conclusion

    f(x)=sinxcosx is continuous for all real x.

    (c) f(x)=sinxcosx

    • Product of two continuous functions is continuous.

    Conclusion

    f(x)=sinxcosx is continuous for all real x.


    Question 22

    Discuss the continuity of the cosine, cosecant, secant, and cotangent functions.

    Answer

    To discuss the continuity of these trigonometric functions, recall:

    • A function is continuous at a point if the limit exists and equals the value of the function at that point.

    • Discontinuity occurs where the function is not defined.


    Cosine Function

    f(x)=cosx

    • cosx is defined for all real values of x.

    • It is smooth and has no breaks or gaps.

    Conclusion

    cosx is continuous for all xR.


    Cosecant Function

    f(x)=cscx=1sinx

    • cscx is not defined where sinx=0.

    • sinx=0 at x=nπ, where n is any integer.

    Conclusion

    cscx is discontinuous at x=nπ.
    It is continuous for all other real values of x.


    Secant Function

    f(x)=secx=1cosx

    • secx is not defined where cosx=0.

    • cosx=0 at x=(2n+1)π2, where n is any integer.

    Conclusion

    secx is discontinuous at x=(2n+1)π2.
    It is continuous everywhere else.

    Cotangent Function

    f(x)=cotx=cosxsinx

    • cotx is not defined where sinx=0.

    • Similar to cosecant, discontinuity occurs at x=nπ.

    Conclusion

    cotx is discontinuous at x=nπ.
    It is continuous for all other real values of x.


    Question 23

    Find all points of discontinuity of

    f(x)={sinxx,if x<0x+1,if x0

    Answer

    The function changes its definition at x=0, so discontinuity (if any) must be checked at x=0.

    Step 1: Compute limit from the left side as x0

    Consider

    limx0sinxx

    We know the standard limit identity:

    limx0sinxx=1

    So,

    limx0f(x)=1

    Step 2: Compute right-hand limit as x0+

    From the second part f(x)=x+1 when x0:

    limx0+(x+1)=0+1=1

    Step 3: Value of the function at x=0

    Since x0,

    f(0)=0+1=1

    Comparison

    limx0f(x)=1,limx0+f(x)=1,f(0)=1

    Since all three are equal:

    limx0f(x)=f(0)

    Final Conclusion

    The function is continuous at x=0.

    There are no other points where the definition changes, and both components of the function are continuous in their respective intervals.

    Therefore, f(x) is continuous for all x.


    Question 24

    Determine if the function defined by

    f(x)={x2sin(1x),if x00,if x=0

    is continuous at x=0.


    Answer

    To check continuity at x=0, we need to verify:

    limx0f(x)=f(0)

    Given:

    f(0)=0

    Find the limit of f(x) as x0

    f(x)=x2sin(1x)

    We know that:

    1sin(1x)1

    Multiplying the entire inequality by x20:

    x2x2sin(1x)x2

    Now take the limit as x0:

    limx0x2=0andlimx0x2=0

    By Squeeze (Sandwich) Theorem:

    limx0x2sin(1x)=0

    Therefore:

    limx0f(x)=0=f(0)

    Final Conclusion

    Yes, the function f(x) is continuous at x=0.


     

     

     

     

     

  • Exercise-4.5, Class 12th, Maths, Chapter 4, NCERT

    Examine the consistency of the system of equations in Exercises 1 to 6.

    1.
    {x+2y=22x+3y=3

    Solution. From the first, x=22y. Substitute: 2(22y)+3y=34y=3y=1. Then x=0.
    Unique solution: (x,y)=(0,1)


    2.
    {2xy=5x+y=4

    Solution. From second y=4x. Substitute: 2x(4x)=53x=9x=3. Then y=1
    Solution: (3,1)


    3.
    {x+3y=52x+6y=8

    Solution. The second equation is 2(x+3y)=10, but RHS is 8, not 10. The two equations are inconsistent (parallel, no solution).
    No solution. 


    4.
    {x+y+z=12x+3y+2z=2ax+ay+2az=4

    Solution. From (1) & (2): subtract 2(1) from (2) → y=0. Then x+z=1.
    Third equation is a(x+y+2z)=4. With y=0 this becomes a(x+2z)=4. Using x=1z:

    a((1z)+2z)=a(1+z)=41+z=4a(if a0).

    So for a0: z=4a1,  x=24a,  y=0 (unique solution).
    If a=0: third eqn becomes 0=4 impossible → inconsistent.

    So: consistent (unique) for a0 with (x,y,z)=(24a,0,4a1). Inconsistent when a=0.  depending on a.


    5.
    {3xy2z=22yz=13x5y=3

    Solution. From second: z=2y+1. From third: x=(3+5y)/3. Substitute into first:

    33+5y3y2(2y+1)=2(3+5y)y4y2=21=2,

    contradiction. So inconsistent (no solution)


    6.
    {5xy+4z=52x+3y+5z=25x2y+6z=1

    Solution. Subtract (1) from (3): y+2z=6y2z=6. Put in (2):

    2x+3(6+2z)+5z=22x+18+11z=2x=8112z

    Put x,y into (1): solving gives z=2, then y=2, x=3
    Unique solution: (x,y,z) = (3,2,-2)

    Solve system of linear equations, using matrix method, in Exercises 7 to 14.

    Question 7 

    Solve by matrix method:

    {5x+2y=4,7x+3y=5.

    Matrix form: Ax=b with

    A=[5273],x=[xy],b=[45]

    detA=5372=1514=1
    A1=[3275] (since 1/detA=1).
    Hence x=A1b=[3275][45]=[23]

    Answer: x=2,  y=3.


    Question 8 

    {2xy=2,3x+4y=3.

    Matrix form: A=[2134], b=[23]
    detA=243(1)=8+3=11

    A1=111[4132]
    x=A1b=111[4132][23]=[5111211]

    Answer: x=511,  y=1211.


    Question 9 

    {4x3y=3,3x5y=7.

    Matrix form: A=[4335], b=[37]
    detA=4(5)3(3)=20+9=11

    A1=111[5334]=111[5334]x=A1b=111[5334][37]=[6111911]

    Answer: x=611,  y=1911.


    Question 10 

    {5x+2y=3,3x+2y=5.

    Matrix form: A=[5232], b=[35]
    Subtract second from first: 2x=2x=1Then 5(1)+2y=35+2y=32y=8y=4.

    (Or use inverse: detA=5232=106=4, A1=14[2235] giving same result.)

    Answer: x=1,  y=4.


    Question 11 

    Solve the system

    {2x+y+z=1,x2yz=32,2x+y3z=0.

    Solution (matrix / elimination).

    Augmented matrix:

    [2111121322130]

    To avoid fractions, multiply row2 by 2 first:

    R22R2:[211124232130]

    Now eliminate using R1:

    • R2R2R1
      [0,5,32]

    • R3R3R1
      [0,0,41]

    Matrix becomes

    [211105320041]

    Back-substitution:

    From row3: 4z=1z=14

    Row2: 5y3z=25y314=25y=114y=1120

    Row1: 2x+y+z=12x+(1120)+14=1
    Compute y+z=1120+520=620=310
    So 2x310=12x=1310x=1320

    Answer: x=1320,  y=1120,  z=14


    Question 12 

    Solve the system

    {xy+z=4,2x+y3z=0,3y5z=9.

    Solution (matrix / substitution).

    From the third equation:

    3y5z=9y=9+5z3

    Substitute y into the first equation:

    x9+5z3+z=4

    Multiply by 3:

    3x(9+5z)+3z=12    3x92z=12    3x2z=21.

    Sox=7+23z.(*)

    Now substitute x and y into the second equation 2x+y3z=0

    2(7+23z)+9+5z33z=0.

    Compute left side:

    14+43z+9+5z33z=14+4z+9+5z33z

    =14+9+9z33z=14+3+3z3z=17.

    That gives 17=0, a contradiction.

    Conclusion: The system is inconsistent; no solution.

    Answer: No solution (inconsistent system).


    Question 13 

    Solve the system

    {2x+3y+3z=5,x2y+z=4,3xy2z=3.

    Solution (matrix / elimination).

    Augmented matrix:

    [233512143123]

    Use row2 as pivot to eliminate others:

    • R1R12R2
      [0,  7,  113]

    • R3R33R2
      [0,  5,  515]

    So we have

    [12140711305515]

    (reordered so row2 is the original R2).

    Eliminate y from row3 using row2:

    • R37R35R2

    7R3=[0,35,35105],  5R2=[0,35,565]

    So R3[0,0,4040] ⇒ 40z=40z=1

    Back-substitute:

    Row2: 7y+z=137y1=137y=14y=2

    Row1 (original row2): x2y+z=4x41=4x=1

    Answer: x=1,  y=2,  z=1


    Question 14 (Plain text)

    Solve the system

    {xy+2z=7,3x+4y5z=5,2xy+3z=12.

    Solution (matrix / elimination).

    Augmented matrix:

    [1127345521312]

    Eliminate below first pivot R1:

    • R2R23R1:  [0,  7,  1126]

    • R3R32R1:  [0,  1,  12]

    Swap R2 and R3 to use the simpler pivot:

    [11270112071126]

    Eliminate y from row3:

    • R3R37R2:  [0,  0,  412]

    So 4z=12z=3

    Back-substitute:

    Row2: yz=2y3=2y=1

    Row1: xy+2z=7x1+6=7x=2

    Answer: x=2,  y=1,  z=3

     

  • Exercise-4.1, Class 12th, Maths, Chapter 4, NCERT

    DETERMINANTS

    Question 1

    Evaluate 2451

    Solution.
    det=2(1)4(5)=2+20=18


    Question 2

    (i) cosθsinθsinθcosθ

    Solution 2 (i):

    det=cosθcosθ(sinθ)sinθ=cos2θ+sin2θ=1.

    Question 2 (ii):

    x2x+1x1x+1x+1Solution:

    We know that for a 2×2 determinant.

    Now compute:

    det=(x2x+1)(x+1)(x1)(x+1).

    Step 1: Expand both terms

    (x2x+1)(x+1)=x3+x2x2x+x+1=x3+1
    (x1)(x+1)=x21

    Step 2: Substitute back

    det=(x3+1)(x21)=x3x2+2

    Question 3

    If A=(1242), show 2A=4A

    Solution.
    For an n×n matrix scaling by scalar k multiplies the determinant by kn. Here n=2 and k=2. So 2A=22A=4A

    (Direct check: A=1224=28=6. Then 2A=det(2484)=2448=832=24=4(6)


    Question 4

    If A=(101012004), show 3A=27A

    Solution.
    A is 3×3. Scaling by 3 multiplies determinant by 33=27. Hence 3A=27A.

    (One can check: A is product of diagonal entries 114=4.

    3A has diagonal 3,3,12 so determinant 3312=108=274


    Question 5 — Evaluate the following determinants

    (i) 312001350

    Solution (5.i).
    Expand along second row (only one nonzero entry a23=1):

    Minor for a23 is 3135=3(5)(1)3=15+3=12

    Cofactor C23=(1)2+3(12)=1(12)=12. Then determinant = a23C23=(1)12=12


    (ii) 345112231

    Solution (5.ii).
    Compute by expansion / rule of Sarrus:

    det=31231(4)1221+51123.

    Evaluate minors:
    So det=37+45+51=21+20+5=46


    (iii) 012103230

    Solution (5.iii).
    Compute (expanding first row):

    det=0()11320+21023

    First minor: (1)0(3)(2)=06=6; the corresponding contribution is 1(6)=6
    Second minor: (1)30(2)=3; contribution 2(3)=6. Sum 66=0


    (iv) 212021350

    Solution (5.iv).
    Expand along first row:

    det=22150(1)0130+(2)0235

    Compute minors: first =20(1)(5)=05=52(5)=10
    second minor =00(1)3=3 ⇒ sign gives +13=+3
    third minor =0(5)23=6 ⇒ multiplied by 2 gives +12.
    Sum 10+3+12=5.


    Question 6

    If A=(112213549), find A

    Solution.
    Expand along first row:

    A=1134912359+(2)2154

    Compute minors: first = 1(9)(3)4=9+12=3
    second = 2(9)(3)5=18+15=3. With the minus sign yields 1(3)=+3.
    third minor = 2415=85=3, times 2 gives 6. Sum 3+36=0

    So A=0

    Question 7 (i):

    Find the value of x if 2451=2x46x


    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbcStep 1: Compute the determinant on the left-hand side (LHS)

    2451=(2)(1)(4)(5)=220=18Step 2: Compute the determinant on the right-hand side (RHS)

    2x46x=(2x)(x)(4)(6)=2x224

    Step 3: Set them equal

    18=2x224.

    Simplify:

    2x2=18+24=6.
    x2=3.
    x=±3

    Question 7 (ii):

    Find the value of x if 2345=x32x5

    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    2345=(2)(5)(3)(4)=1012=2

    Step 2: Compute RHS

    x32x5=(x)(5)(3)(2x)=5x6x=x

    Step 3: Equate LHS and RHS

    2=xx=2

     

    Question 8:

    If x218x=62186, then find x

    Options:
    (A) 6 (B) ±6 (C) 6 (D) 0


    Solution:

    For any 2×2 determinant
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    x218x=xx218=x236Step 2: Compute RHS

    62186=66218=3636=0

    Step 3: Equate LHS and RHS

    x236=0

    x2=36

    x=±6

    Final Answer:

    (B)  x=±6