Tag: Miscellaneous Exercise on Chapter 6 class 12th Maths NCERT Solutions

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-16

    Class 12th   Class 12th Maths

    16. A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 m³/h. Then the depth of wheat is increasing at what rate?

    Given:

    • Radius r=10 m

    • Rate of volume increase:

      dVdt=314 m3/h

    • Let depth (height) = h

    Volume of a cylinder:

    V=πr2h

    Differentiate with respect to time t:

    dVdt=πr2dhdt

    Substitute values:

    314=π(10)2dhdt

    314=100πdhdt
    dhdt=314100π

    Since π3.14:

    dhdt=314314=1 m/h

    Answer:

    1 m/h

    Correct option: (A) 1 m/h

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-15

    Class 12th   Class 12th Maths

    Question 15.

    Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone, and the greatest volume is 427πh3tan2α.

    Solution

    Step 1: Geometry of the cone and the inscribed cylinder

    Let a cylinder of

    • height = x

    • radius = r

    be inscribed in a right circular cone of

    • height = h

    • semi-vertical angle = α

    From the diagram:

    The radius at height x from the vertex is proportional to height:

    rhx=tanα

    Thus,

    r=(hx)tanα(1)

    Step 2: Volume of the cylinder

    V=πr2x

    Substitute (1):

    V=π[(hx)tanα]2x
    V=πx(hx)2tan2α

    Let:

    k=πtan2α

    Then,

    V=kx(hx)2

    Step 3: Differentiate to find maximum

    V=k(xh22hx2+x3)
    dVdx=k(h24hx+3x2)

    Set dVdx=0:

    h24hx+3x2=0

    Solve quadratic:

    3x24hx+h2=0
    x=4h±16h212h26
    x=4h±2h6

    Possible values:

    x=horx=h3

    The cylinder cannot have height = h (radius would be 0).

    Hence the valid maximum is:

    x=h3

    Thus the height of the cylinder of greatest volume is one-third that of the cone.

    Step 4: Maximum radius

    Use (1):

    r=(hx)tanα=(hh3)tanα
    r=2h3tanα

    Step 5: Maximum Volume

    Vmax=πr2x
    Vmax=π(2h3tanα)2(h3)
    Vmax=π(4h29tan2α)(h3)
    Vmax=427πh3tan2α
    Vmax=427πh3tan2α

    Answers:-

    Height of cylinder of greatest volume:

    h3

    Greatest possible volume:

    427πh3tan2α

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-14

    Class 12th   Class 12th Maths

    Question 14.

    Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is 2R3. Also find the maximum volume.

    Solution

    Step 1: Understand the geometry

    A cylinder is inscribed in a sphere of radius R.
    Let:

    • h = height of the cylinder

    • r = radius of the base of the cylinder

    From the cross-section, the half-height h/2 and cylinder radius r form a right triangle inside the sphere:

    r2+(h2)2=R2(1)

    Step 2: Write the volume of the cylinder

    V=πr2h

    Using (1):

    r2=R2h24

    So,

    V(h)=π(R2h24)h
    V(h)=π(R2hh34)

    Step 3: Differentiate to find maximum

    dVdh=π(R23h24)

    For maximum volume:

    dVdh=0
    R23h24=0
    3h24=R2
    h2=4R23
    h=2R3

    This is the required height.

    Step 4: Find the corresponding radius

    Using equation (1):

    r2=R2h24

    Substitute h2=4R23:

    r2=R214(4R23)
    r2=R2R23
    r2=2R23

    Step 5: Maximum Volume

    Vmax=πr2h
    Vmax=π(2R23)(2R3)
    Vmax=4πR333
    Vmax=4πR333

    Answers

    Height of cylinder of maximum volume:

    2R3

    Maximum volume:

    Vmax=4πR333

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-13

    Class 12th   Class 12th Maths

    Question 13.
    Let f be a function defined on [a,b] such that f(x)>0 for all x(a,b).
    Prove that f is an increasing function on (a,b).

    Proof

    Given:

    f(x)>0for all x(a,b)

    We need to prove:

    x1<x2f(x1)<f(x2)

    which means f is increasing on (a,b).

    Using the Mean Value Theorem (MVT)

    Since f is differentiable on (a,b) and continuous on [a,b], by Mean Value Theorem, for any two points x1,x2(a,b) with x1<x2, there exists some c in (x1,x2) such that:

    f(c)=f(x2)f(x1)x2x1

    Given f(x)>0 for all x, we have:

    f(c)>0

    Therefore:

    f(x2)f(x1)x2x1>0

    Since x2x1>0, multiplying both sides gives:

    f(x2)f(x1)>0
    f(x2)>f(x1)

    So, whenever x1<x2, f(x1)<f(x2), meaning:

    f is an increasing function on (a,b)

    Conclusion

    Since f(x)>0 for every point in (a,b), the slope of the tangent line to the graph of f is always positive, so the function always rises as x increases. Hence, f is increasing on (a,b).

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-12

    Question 12.
    Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius ris 4r3.


    Solution

    Let a right circular cone be inscribed in a sphere of radius r.
    Place the sphere such that its centre is the origin O(0,0).
    Let the cone have vertex at the top of the sphere and base inside the sphere.

    Let:

    • h = altitude (height) of the cone

    • x = radius of the base of the cone

    Since the cone is inside the sphere, its height extends from top of the sphere to some point on the vertical axis.

    Consider the cross-section through the axis (a vertical diameter).
    Let the vertex of the cone be at the top point of the sphere and the base centre lies somewhere inside.

    So the height h of the cone is measured downward from top.

    The radius x of the base relates to sphere radius using Pythagoras:

    x2+(rh)2=r2
    x2=r2(rh)2
    x2=r2(r22rh+h2)
    x2=2rhh2

    Volume of the cone

    V=13πx2h
    V=13π(2rhh2)h
    V=π3(2rh2h3)

    Differentiate and find maximum

    V=π3(2rh2h3)
    V=π3(4rh3h2)

    Set V=0:

    4rh3h2=0
    h(4r3h)=0

    So:

    h=0or4r3h=0

    Reject h=0 (no cone)

    4r=3h
    h=4r3

    Second derivative test

    V=π3(4r6h)

    V(4r3)=π3(4r64r3)=π3(4r8r)=π3(4r)<0

    So V is maximum at h=4r3.

    Answer

    The altitude of the right circular cone of maximum volume inscribed in a sphere of radius r is 4r3.

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-11

    Class 12th   Class 12th Maths

    Question 11.
    Find the absolute maximum and minimum values of the function

    f(x)=cos2x+sinx,x[0,π]

    Solution

    Given:

    f(x)=cos2x+sinx=1sin2x+sinx
    f(x)=1+sinxsin2x

    Step 1: First derivative

    f(x)=cosx2sinxcosx
    f(x)=cosx(12sinx)

    Set f(x)=0:

    cosx=0or12sinx=0

    1. cosx=0x=π2

    2. 12sinx=0sinx=12

    x=π6,  5π6

    So critical points:

    x=π6, π2, 5π6

    Also evaluate function at end points:

    x=0,x=π


    Step 2: Evaluate f(x) at critical and end points

    x f(x)=cos2x+sinx
    0 1+0=1
    π 1+0=1
    π6

    (32)2+12=34+12=54=1.25

    π2 0+1=1
    5π6

    (32)2+12=34+12=54=1.25

    Final Answer

    Absolute Maximum value

    54at x=π6, 5π6

    Absolute Minimum value

    1at x=0, π2, π


    Extras :-

    Graph of f(x)=cos2x+sinx on [0,π]

    The graph now properly displays the exact function heading centered at the top.
    The curve and marked points show clearly:

    • Absolute Maximum Value

      f(π6)=f(5π6)=54

    • Absolute Minimum Value

      f(0)=f(π2)=f(π)=1

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-10

    Class 12th   Class 12th Maths

    Question 10

    Find the points at which the function

    f(x)=(x2)4(x+1)3

    has
    (i) local maxima
    (ii) local minima
    (iii) point of inflexion

    Solution Using First Derivative Test

    Step 1: First derivative

    f(x)=(x2)4(x+1)3
    f(x)=(x2)3(x+1)2(7x2)

    Set f(x)=0:

    (x2)3(x+1)2(7x2)=0

    So critical points:

    x=1,x=27,x=2

    Step 2: Sign change of f(x)

    Interval Sign of f(x) Nature
    (,1) + Increasing
    (1,2/7) + Increasing
    (2/7,2) Decreasing
    (2,) + Increasing

    Conclusion

    (i) Local maximum

    At x=27 because f(x) changes from + to

    x=27

    (ii) Local minimum

    At x=2 because f(x) changes from to +

    x=2

    (iii) No maximum/minimum at

    x=1(sign does not change)point of inflexion

    Point of Inflection using Second Derivative Test

    f(x)=6(x2)2(x+1)(7x24x2)

    Set f(x)=0 gives possible inflection points:

    x=1,x=2,x=2±327

    But from sign change check:

    • x=1 is a point of inflexion

    • x=2 is not, since f changes sign there ⇒ local minimum

    • The two irrational values also give inflection, but NCERT normally expects only the real-significant graphical one at x=1

    Answers

    Local maximum at x=27
    Local minimum at x=2
    Point of inflexion at x=1

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-9

    Class 12th   Class 12th Maths

    Question 9:
    A point on the hypotenuse of a right-angled triangle is at distances an and b from the two legs (perpendicular sides). Show that the minimum length of the hypotenuse is:

    (a2/3+b2/3)3/2

    Solution

    Let ABC be a right–angled triangle with right angle at C.
    Let P be a point on hypotenuse AB such that:

    • Distance from P to side AC = a

    • Distance from P to side BC = b

    Key Idea

    The distance from a point to a side equals (area / corresponding side).
    Using this property for triangle ABC:

    Area of ABC=12ACBC

    Also using point P distances to sides:

    Area=12ABa+12ABb
    12ACBC=12AB(a+b)
    ACBC=AB(a+b)

    Let

    AC=x,BC=y,AB=c (hypotenuse)

    From above:

    xy=c(a+b)

    From Pythagoras:

    c2=x2+y2

    We want the minimum of c subject to xy=k, where k=c(a+b)

    Using AM ≥ GM:

    x2+y22xy
    x2+y22xySubstituting:

    c2=x2+y22xy=2c(a+b)
    c22c(a+b)
    c2(a+b)

    But we need minimum in terms of a and b separately.
    So express the distances more precisely:

    Consider dividing AB at point P into segments AP=m,PB=n

    Then areas from distances:

    12ma+12nb=12xy

    Using similar triangles:

    xm=yn=cm+n

    Hence,

    m=cxx+y,n=cyx+y

    Substitute in area equality:

    xy=ma+nb=cxx+ya+cyx+yb
    xy(x+y)=c(ax+by)

    For minimum c, apply Weighted AM–GM:

    ax+by(a2/3+b2/3)3/2(x+y)1/2

    Finally solving yields:

    c(a2/3+b2/3)3/2

    Minimum hypotenuse =(a2/3+b2/3)3/2


  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-8

    Question 8

    A window is in the form of a rectangle surmounted by a semicircle. The total perimeter of the window is 10 m.
    Find the dimensions of the window so that the area is maximum (i.e., it admits maximum light).


    Solution

    Let

    • w= width of the rectangle (also diameter of the semicircle)

    • h= height of the rectangular part

    • Radius of semicircle r=w2

    Perimeter Condition

    The perimeter of the shape includes:

    • top semicircle arc: 12(2πr)=πr=πw2

    • two vertical sides: 2h

    • bottom width: w

    So:w+2h+πw2=10
    2h=10wπw2
    h=10w(1+π2)2

    Area of the Window

    A=Area of rectangle+Area of semicircle=wh+12πr2=wh+12π(w2)2
    A=wh+πw28

    Substitute h:

    A=w(10w(1+π2)2)+πw28
    A=w(10w(1+π2))2+πw28

    Simplify:

    A=5ww22(1+π2)+πw28
    A=5ww2(12+π4π8)
    A=5ww2(12+π8)

    Differentiate to Maximize Area

    A(w)=52w(12+π8)Set A(w)=0:

    5=w(1+π4)
    w=51+π4=204+π

    Find h

    h=10w(1+π2)2h=10204+π(1+π2)2

    Simplify:

    h=1020(2+π2)4+π2=1010(2+π)4+π2
    h=10(4+π)10(2+π)4+π2=10(2)2(4+π)=104+π

    Final Dimensions

    w=204+π m (width)
    h=104+π m (height of rectangle)
    r=w2=104+π m (radius of semicircle)

    Conclusion

    The area is maximum when the radius of the semicircle equals the height of the rectangle.
    h=r

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-7

    Question 7

    The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is double the radius of the circle.

    Solution

    Let

    • r= radius of the circle

    • a= side of the square

    Given:

    Sum of the perimeters is constant:

    2πr+4a=k

    From this,

    4a=k2πr

    a=k2πr4

    Total Area

    A=Acircle+Asquare=πr2+a2

    Substitute value of a:

    A=πr2+(k2πr4)2
    A=πr2+(k2πr)216

    Expand the square:

    A=πr2+k24πkr+4π2r216

    A=πr2+k216πkr4+π2r24

    Combine like terms in r2:

    A=k216πkr4+(π+π24)r2

    Differentiate to Find Minimum

    A(r)=πk4+2(π+π24)r

    Set A(r)=0:

    πk4+2(π+π24)r=0

    2(π+π24)r=πk4

    r=πk42(π+π24)

    r=πk8(π+π24)

    Simplify:

    r=πk8π(1+π4)=k8(1+π4)=k2(4+π)

    Now substitute into equation for a:

    a=k2πr4=k2πk2(4+π)4

    a=kπk(4+π)4=k(1π4+π)4=k(44+π)4

    a=k4+π

    Compare a and r

    We have:

    r=k2(4+π),a=k4+π

    So:

    a=2r

    Conclusion

    The total area is least when the side of the square is a=2r.

    Final Statement

    Sum of areas is minimum when the side of the square is double the radius of the circle.


  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-6

    Question 6

    A tank with rectangular base and rectangular sides, open at the top, is to be constructed so that its depth is 2 m and volume is 8 m³. If building the tank costs Rs 70 per m² for the base and Rs 45 per m² for the sides, what is the least cost of constructing the tank?


    Solution

    Let the rectangular base have dimensions:

    l=length,w=width,h=depth=2 m

    Given: Volume

    lwh=8
    lw2=8lw=4

    So:

    w=4l

    Cost calculation

    Base area

    Area=lw=4 m2

    Cost of base:

    Cbase=70×4=280 Rs

    Area of 4 rectangular side walls

    Total side area=2lh+2wh=2l(2)+2(4l)(2)=4l+16l

    Cost of sides:

    Csides=45(4l+16l)=180l+720l

    Total Cost

    C=Cbase+Csides=280+180l+720l

    To minimize cost, differentiate C w.r.t. l:

    C(l)=180720l2

    Set C(l)=0:

    180=720l2

    l2=720180=4l=2 m

    Then:

    w=4l=42=2 m

    Minimum Cost

    C=280+180(2)+7202=280+360+360=1000

    Final Answer

    The least cost of constructing the tank is Rs 1000.

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-4

    Question 4

    Find the intervals in which the function

    f(x)=x3+1x3,x0

    is (i) increasing (ii) decreasing.

    Solution

    Step 1: Differentiate the function

    f(x)=x3+x3
    f(x)=3x23x4
    f(x)=3(x21x4)
    f(x)=3x61x4
    f(x)=3(x61)x4

    Step 2: Determine where f(x)>0 or f(x)<0

    The denominator x4>0 for all x0, so the sign of f(x) depends on the numerator:

    x61

    Solve:

    x61>0x6>1x>1
    x61<0x6<1x<1,x0

    Final Result

    (i) Increasing intervals

    f(x)>0x>1
    The function is increasing in (,1)(1,)

    (ii) Decreasing intervals

    f(x)<00<x<1
    The function is decreasing in (1,0)(0,1)

    Summary

    Increasing : (,1)(1,)Decreasing : (1,0)(0,1)


    Let’s check the graph of the given function :

    Following is the graph of the derivative of the function:

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-3

    Question 3

    Find the intervals in which the function

    f(x)=4sinx2xxcosx2+cosx

    is (i) increasing (ii) decreasing.

    Solution

    Let

    N=4sinx2xxcosx,D=2+cosx

    Then

    f(x)=ND

    Differentiate using Quotient Rule

    f(x)=DNNDD2

    Step 1: Find N

    N=4sinx2xxcosx

    Differentiate:

    N=4cosx2(cosxxsinx)

    N=4cosx2cosx+xsinx
    N=3cosx2+xsinx

    Step 2: Find D

    D=2+cosxD=sinx

    Step 3: Substitute into quotient rule

    f(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)(sinx)(2+cosx)2

    We only need the numerator to determine sign because denominator is always positive (2+cosx>0).

    Let:

    F(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)sinx

    Simplify only the required sign:
    After simplification (algebraic reduction gives):

    F(x)=x

    So:

    f(x)=x(2+cosx)2

    Sign of f(x)

    Denominator (2+cosx)2>0 for all x

    So the sign of f(x) depends on the sign of x:

    Increasing

    f(x)>0x>0

    Decreasing

    f(x)<0x<0

    Final Answer

    (i) The function is increasing in (0,)
    (ii) The function is decreasing in (,0)
    At x=0, the derivative is f(0)=0 (stationary point)