Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-5

Question 5

Find the maximum area of an isosceles triangle inscribed in the ellipse

x2a2+y2b2=1

with its vertex at one end of the major axis.

Solution

Assume a>b, so the major axis is along the x-axis.
Take the vertex of the isosceles triangle at the right end of the major axis:

A(a,0).

Let the other two vertices be symmetric about the x-axis (this gives an isosceles triangle and will turn out to be the max–area case):

B(acosθ,bsinθ),C(acosθ,bsinθ),0<θ<π.

These lie on the ellipse since they are in parametric form:

x=acosθ,y=±bsinθ.

Area of the triangle

  • Base BC is vertical:

    length of BC=2bsinθ.

  • Height is the horizontal distance from A(a,0) to the line x=acosθ:

    height=aacosθ=a(1cosθ).

So the area A(θ) of triangle ABC is

A(θ)=12×base×height=122bsinθa(1cosθ)=absinθ(1cosθ).

We must maximize

A(θ)=absinθ(1cosθ),0<θ<π.

Maximize A(θ)

Differentiate:

A(θ)=ab(sinθsinθcosθ),
A(θ)=ab(cosθ(cos2θsin2θ)).

Use sin2θ=1cos2θ:

cos2θsin2θ=cos2θ(1cos2θ)=2cos2θ1.

So

A(θ)=ab(cosθ(2cos2θ1))=ab(1+cosθ2cos2θ).

Set A(θ)=0:

1+cosθ2cos2θ=0.

Let c=cosθ. Then

2c2c1=0
c=1±1+84=1±34=1, 12.

  • cosθ=1θ=0, which gives zero area, so not a maximum.

  • cosθ=12θ=2π3in (0,π), valid.

Then

sinθ=sin2π3=32.

Substitute in the area:

Amax=absinθ(1cosθ)=ab(32)(1(12))=ab(32)(32)=334ab.

Final Answer

The maximum area of the isosceles triangle is 334ab.


👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.