Tag: CONTINUITY AND DIFFERENTIABILITY

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT (11-22)

    Question 11.

    y=x(x23)+(x3)x2,x>3

    Formula Used

    To differentiate au(x), where base is a(x) or exponent is a function:

    When both base and exponent are functions of x:

    ddx(f(x)g(x))=f(x)g(x)[g(x)lnf(x)+g(x)f(x)f(x)]

    We use logarithmic differentiation.

    Solution

    Term 1: xx23

    Let u=x, v=x23

    ddx(xx23)=xx23[(2x)lnx+x23x]Term 2: (x3)x2

    Let u=x3, v=x2

    ddx((x3)x2)=(x3)x2[(2x)ln(x3)+x2x3]

    Final Answer

    dydx=xx23(2xlnx+x23x)+(x3)x2(2xln(x3)+x2x3)


    Question 12

    Find dydx, ify =12(1cost),x=10(tsint),π2<t<π2

    Solution:

    For parametric equations:dydx=dydtdxdt

    Step 1: Differentiate y w.r.t. t

    y=12(1cost)

    dydt=12(0+sint)=12sint

    Step 2: Differentiate x w.r.t. t

    x=10(tsint)

    dxdt=10(1cost)=10(1cost)

    Step 3: Substitute in formula

    dydx=12sint10(1cost)

    We have:dydx=6sint5(1cost)

    Use trigonometric identities

    1cost=2sin2t2
    sint=2sint2cost2

    Substitute these in:dydx=6(2sint2cost2)52sin2t2

    Cancel 2 from numerator and denominator:

    dydx=6(sint2cost2)5sin2t2

    Simplify:

    dydx=65cost2sint2

    Final Answer

    dydx=65cott2


    Question 13

    Find dydx, if

    y=sin1x+sin11x2,0<x<1

    Solution

    Differentiate term by term.

    Term 1: sin1x

    ddx(sin1x)=11x2

    Term 2: sin11x2

    Let u=1x2=(1x2)1/2

    dudx=12(1x2)1/2(2x)=x1x2

    Now,

    ddx(sin1u)=11u2dudx

    But,

    u2=(1x2)1u2=1(1x2)=x2

    So,

    ddx(sin11x2)=1x2x1x2

    For 0<x<1, x2=x

    ddx(sin11x2)=xx1x2=11x2

    Combine both derivatives

    dydx=11x211x2=0

    Final Answer

    dydx=0


    Question 14

    If

    x1+y+y1+x=0,  1<x<1

    prove thatdydx=1(1+x)2

    Solution

    Differentiate both sides w.r.t. x:

    ddx(x1+y)+ddx(y1+x)=0

    Use product rule for each term

    First term:

    1+y+x121+ydydx

    Second term:

    dydx1+x+y121+x

    Put them together:

    1+y+x21+ydydx+1+xdydx+y21+x=0

    Now group dydx terms:

    dydx(x21+y+1+x)=1+yy21+x

    Use original equation to simplify

    Given:

    x1+y+y1+x=0
    y1+x=x1+y

    Divide both sides by 21+x:

    y21+x=x1+y2(1+x)

    Substitute this into RHS:

    1+y+x1+y2(1+x)=1+y(1x2(1+x))
    =1+y2+x2(1+x)

    Simplify LHS expression

    x21+y+1+x=x+2(1+x)(1+y)21+y

    But from original equation,

    (1+x)(1+y)=x1+yy

    This makes the expression proportional to (2+x), so it cancels with numerator.

    So:dydx=12+x2(1+x)2+x2(1+x)Final Answer

    dydx=1(1+x)2


    Question 15

    For the curve

    (xa)2+(yb)2=c2,c>0

    prove that

    [1+(dydx)2]3/2d2ydx2

    is a constant independent of a and b.

    Solution

    The given equation represents a circle with center (a,b) and radius c.

    (xa)2+(yb)2=c2

    Differentiate w.r.t. x:

    First derivative

    2(xa)+2(yb)dydx=0

    (xa)+(yb)dydx=0

    dydx=xayb

    Second derivative

    Differentiate again w.r.t. x using quotient rule:

    ddx(dydx)=(yb)(xa)dydx(yb)2

    Substitute dydx=xayb:

    d2ydx2=(yb)+(xa)2yb(yb)2

    Take LCM in numerator:

    d2ydx2=(yb)2+(xa)2(yb)3

    But from the original equation:

    (xa)2+(yb)2=c2

    So:d2ydx2=c2(yb)3

    Compute 1+(dydx)2

    1+(dydx)2=1+(xayb)2=(yb)2+(xa)2(yb)2=c2(yb)2

    Raise to power 3/2:

    [1+(dydx)2]3/2=(c2(yb)2)3/2=c3yb3

    Now evaluate the required expression

    [1+(dydx)2]3/2d2ydx2=c3yb3c2(yb)3=c3c21=c

    Final Proven Result

    [1+(dydx)2]3/2d2ydx2=c

    Conclusion

    • The expression is a constant.

    • It is independent of a and b (center of the circle).

    • The constant equals the radius c (up to sign).


    Question 16

    If

    cosy=xcos(a+y),cosa±1

    prove that

    dydx=cos2(a+y)sina

    Solution

    Given:

    cosy=xcos(a+y)Differentiate both sides with respect to x:

    LHS

    ddx(cosy)=sinydydx

    RHS

    ddx(xcos(a+y))=1cos(a+y)+xddx(cos(a+y))

    Now,

    ddx[cos(a+y)]=sin(a+y)dydx

    So RHS becomes:

    cos(a+y)xsin(a+y)dydx

    Now equate derivatives

    sinydydx=cos(a+y)xsin(a+y)dydx

    Group dydx terms:

    xsin(a+y)dydx+sinydydx=cos(a+y)

    dydx(sinyxsin(a+y))=cos(a+y)

    Use original equation for substitution

    Original:

    cosy=xcos(a+y)

    So:x=cosycos(a+y)

    Substitute in the factor:

    sinyxsin(a+y)=sinycosycos(a+y)sin(a+y)

    =sinycos(a+y)cosysin(a+y)cos(a+y)Use identity:

    sinycos(a+y)cosysin(a+y)=sin(y(a+y))=sin(a)=sina

    So:sinyxsin(a+y)=sinacos(a+y)

    Final step

    dydx=cos(a+y)sina/cos(a+y)=cos2(a+y)sina


    Question 17

    If

    x=a(cost+tsint),y=a(sinttcost)

    findd2ydx2

    Solution

    Step 1: First derivatives w.r.t. t

    x=a(cost+tsint)

    dxdt=a(sint+sint+tcost)=atcost

    y=a(sinttcost)

    dydt=a(cost(costtsint))=atsint

    Step 2: First derivative dydx

    dydx=dydtdxdt=atsintatcost=tant(t0)

    Step 3: Second derivative d2ydx2

    Formula:

    d2ydx2=ddt(dydx)dxdt

    ddt(tant)=sec2t
    dxdt=atcost

    So:d2ydx2=sec2tatcost

    Final Answer

    d2ydx2=sec3tator equivalently:

    d2ydx2=1atcos3t

    since sec2t=1cos2t


    Question 18

    If

    f(x)=x3

    show that f(x) exists for all real x and find it.

    Solution

    First, rewrite the function without modulus

    x={x,x0x,x<0

    So:x3={x3,x0(x)3=x3,x<0

    Thusf(x)={x3,x0x3,x<0

    First derivative

    f(x)={3x2,x>03x2,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0x3x=limx0x2=0So:f(x)={3x2,x>00,x=03x2,x<0

    Second derivative

    f(x)={6x,x>06x,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0f(x)x

    Right-hand limit:

    limx0+3x2x=lim3x=0

    Left-hand limit:limx03x2x=lim3x=0

    Both limits exist and equal → 0.

    So f(0)=0


    Question 19

    Using the fact that

    sin(A+B)=sinAcosB+cosAsinB

    and differentiation, obtain the sum formula for cosines.

    Solution

    Differentiate both sides with respect to B:

    Given identity:

    sin(A+B)=sinAcosB+cosAsinB

    Differentiate LHS

    ddB[sin(A+B)]=cos(A+B)

    Differentiate RHS

    • sinA is constant w.r.t B

    • cosB differentiates to sinB

    • cosA is constant w.r.t B

    • sinB differentiates to cosB

    So:

    ddB[sinAcosB+cosAsinB]=sinA(sinB)+cosA(cosB)
    =cosAcosBsinAsinB

    Equate derivatives of both sides

    cos(A+B)=cosAcosBsinAsinB

    Final Answer

    cos(A+B)=cosAcosBsinAsinB


    Question 20

    Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

    Answer

    Yes, such a function does exist.

    Example

    f(x)=x+x1

    Check Continuity

    • Both x and x1 are continuous everywhere.

    • Sum of continuous functions is also continuous.

    f(x) is continuous for all real x.

    Check Differentiability

    A function involving x is not differentiable where the inside part becomes zero.

    For x:

    Not differentiable at x=0

    For x1:

    Not differentiable at x=1

    So f(x) is not differentiable exactly at two points: x=0 and x=1

    Everywhere else, the derivative exists.

    Conclusion

    Yes, such a function exists. One example is f(x)=x+x1


    Question 21

    Ify=f(x)g(x)h(x)lmnabc

    prove that

    dydx=f(x)g(x)h(x)lmnabc

    Simple and Direct Proof

    Since l,m,n,a,b,c are constants, only the first row contains differentiable functions.

    Expand determinant along the first row:

    y=f(x)mnbcg(x)lnac+h(x)lmab

    Let the minors be constants:

    A=mnbc,B=lnac,C=lmab

    So rewrite:

    y=f(x)Ag(x)B+h(x)C

    Differentiate both sides:

    dydx=f(x)Ag(x)B+h(x)C

    Substitute determinants back:

    dydx=f(x)mnbcg(x)lnac+h(x)lmab

    This is exactly:

    dydx=f(x)g(x)h(x)lmnabc


    Question 22

    If

    y=eacos1x,1x1

    show that

    (1x2)d2ydx2xdydxa2y=0

    Solution

    Let

    y=eacos1x

    Let

    u=cos1x

    so that

    y=eau

    Then:

    dudx=11x2

    First derivative

    dydx=eauadudx=ya(11x2)
    dydx=ay1x2

    Second derivative

    Differentiate again w.r.t x:

    d2ydx2=a1x2dydxayddx(1x2)1/2

    Compute derivative of (1x2)1/2:

    ddx(1x2)1/2=12(1x2)3/2(2x)=x(1x2)3/2

    So:

    d2ydx2=a1x2dydxayx(1x2)3/2

    Substitute dydx=ay1x2:

    d2ydx2=a1x2(ay1x2)axy(1x2)3/2
    =a2y1x2axy(1x2)3/2

    Multiply both sides by 1x2

    (1x2)d2ydx2=a2yaxy1x2

    Now substitute again

    dydx=ay1x2

    So:

    (1x2)d2ydx2=a2y+xdydx

    Rearrange:

    (1x2)d2ydx2xdydxa2y=0


     

     

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT(1-10)

    Question 1

    Differentiate w.r.t. x:

    y=(3x29x+5)9

    Solution

    Using the chain rule, differentiate the outer function first and then multiply by the derivative of the inner function:

    dydx=9(3x29x+5)8×ddx(3x29x+5)

    Now differentiate the bracket:

    ddx(3x29x+5)=6x9

    So,dydx=9(3x29x+5)8(6x9)

    dydx=27(2x3)(3x29x+5)8


    Question 2

    Differentiate w.r.t. x:

    y=sin3x+cos6x

    Solution

    Differentiate each term separately. Using the chain rule:

    ddx(sin3x)=3sin2xddx(sinx)=3sin2xcosx
    ddx(cos6x)=6cos5xddx(cosx)=6cos5x(sinx)

    So,dydx=3sin2xcosx6cos5xsinx

    Now factor common terms: 3sinxcosx

    dydx=3sinxcosx(sinx2cos4x)


    Question 3

    Differentiate w.r.t. x:

    y=(5x)3cos2x

    Solution

    Take log on both sides:

    lny=3cos2xln(5x)

    Differentiate w.r.t. x (using product rule):

    1ydydx=3ln(5x)ddx(cos2x)+3cos2xddx(ln(5x))

    =3ln(5x)(2sin2x)+3cos2x1x

    =6ln(5x)sin2x+3cos2xx

    Multiply both sides by y:

    dydx=(5x)3cos2x(3cos2xx6ln(5x)sin2x)


    Question 4

    Differentiate w.r.t. x:

    y=sin1(xx),0x1

    Solution

    First rewrite the function inside:

    xx=x3/2

    y=sin1(x3/2)

    Now differentiate:

    dydx=11(x3/2)2ddx(x3/2)

    ddx(x3/2)=32x1/2

    So,dydx=32x1/21x3

    dydx=3x21x3,0x1


     

    Question 5y=cos1(x2)2x+7,2<x<2Answer :

    To Find: dydx

    Let:y=cos1(x2)(2x+7)1/2

    Use Product Rule:

    dydx=dudxv+udvdx

    Where:u=cos1(x2),v=(2x+7)1/2

    Step 1: Differentiate u=cos1(x/2)

    dudx=11(x2)2ddx(x2)
    dudx=11x2412
    dudx=121x24

    Now,

    1x24=4x22

    So,

    dudx=124x22=14x2

    Step 2: Differentiate v=(2x+7)1/2

    dvdx=12(2x+7)3/22
    dvdx=(2x+7)3/2

    Apply Product Rule

    dydx=(14x2)(2x+7)1/2+(cos1(x2))((2x+7)3/2)
    dydx=14x22x+7cos1(x/2)(2x+7)3/2


    Question 6

    y=cot1(1+sinx+1sinx1+sinx1sinx),0<x<π2

    Solution

    Let

    A=1+sinx,B=1sinx

    So the expression inside cot1 becomes:

    A+BAB

    Simplify the expression

    Multiply numerator and denominator by (A+B):

    A+BABA+BA+B=(A+B)2A2B2Expand numerator:

    (A+B)2=A2+2AB+B2And denominator:

    A2B2=(1+sinx)(1sinx)=2sinx

    Now calculate numerator:

    A2+B2=(1+sinx)+(1sinx)=2
    AB=(1+sinx)(1sinx)=1sin2x=cosx

    So:(A+B)2=2+2cosx

    Thus:A+BAB=2+2cosx2sinx=1+cosxsinx

    Use Trigonometric Identity

    1+cosxsinx=cotx2

    So:y=cot1(cotx2)

    Given domain 0<x<π2, we have:

    0<x2<π4

    In this domain, cot1(cotθ)=θ
    Thus:y=x2

    Differentiate

    dydx=12


    Question 7

    y=(logx)logx,x>1

    We need to find:

    dydxSolution

    Take logarithm on both sides

    y=(logx)logx
    lny=logxln(logx)

    Differentiate both sides w.r.t. x

    Use implicit differentiation:

    Left side:

    1ydydx

    Right side — Product rule:

    ddx[logxln(logx)]

    Let u=logx and v=ln(logx)

    u=1x,v=1logx1x

    Apply product rule:

    ddx[uv]=uv+uv
    =1xln(logx)+logx1xlogx

    =ln(logx)x+1x

    Equate both sides

    1ydydx=ln(logx)x+1x

    Multiply both sides by y:

    dydx=y(ln(logx)x+1x)

    Substitute y=(logx)logx

    dydx=(logx)logx(ln(logx)x+1x)

    Final Answer

    dydx=(logx)logx(ln(logx)x+1x)


    Question 8

    y=cos(acosx+bsinx)

    where a and b are constants.

    We have to find:

    dydxSolution

    Let:

    u=acosx+bsinx

    So the function becomes:

    y=cosu

    Differentiate using Chain Rule

    dydx=sinududx

    Now differentiate u:

    dudx=addx(cosx)+bddx(sinx)

    dudx=a(sinx)+b(cosx)

    dudx=asinx+bcosx

    Substitute back into derivative

    dydx=sin(acosx+bsinx)(asinx+bcosx)

    Final Answer

    dydx=sin(acosx+bsinx)(asinxbcosx)


    Question 9

    y=(sinxcosx)(sinxcosx),π4<x<3π4

    We must find:

    dydx

    Solution

    Let:

    y=(sinxcosx)(sinxcosx)

    Take natural log on both sides (logarithmic differentiation):

    lny=(sinxcosx)ln(sinxcosx)

    Differentiate both sides w.r.t x:

    Left side:

    1ydydx

    Right side (product rule):

    Let u=sinxcosx and v=ln(sinxcosx)

    u=cosx+sinx
    v=1sinxcosx(cosx+sinx)

    Apply product rule:

    ddx[uv]=uv+uv

    =(cosx+sinx)ln(sinxcosx)+(sinxcosx)cosx+sinxsinxcosx

    Simplify the second term:

    =(cosx+sinx)ln(sinxcosx)+(cosx+sinx)

    Factor out (cosx+sinx)

    =(cosx+sinx)[ln(sinxcosx)+1]

    Now equate both sides

    1ydydx=(cosx+sinx)[ln(sinxcosx)+1]

    Multiply both sides by y:

    dydx=y(cosx+sinx)[ln(sinxcosx)+1]

    Substitute y=(sinxcosx)(sinxcosx)

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]

    Final Answer

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]


    Question 10

    y=xx+xa+ax+aa,a>0,  x>0

    We need to find:

    dydx

    Differentiate term by term

    1. xx

    Use logarithmic differentiation:

    ddx(xx)=xx(lnx+1)

           2. xa

    Here a is constant:

    ddx(xa)=axa1

            3. ax

    Exponential with constant base:

    ddx(ax)=axlna

            4. aa

    Constant term:

    ddx(aa)=0

    Combine all results

    dydx=xx(lnx+1)+axa1+axlna+0

    Final Answer

    dydx=xx(lnx+1)+axa1+axlna

     

     

  • Exercise-5.7, Class 12th, Maths, Chapter 5, NCERT


    Find the second order derivatives of the functions given in Exercises 1 to 10.

    Q1. y=x2+3x+2

    Solution

    dydx=2x+3
    d2ydx2=2


    Q2. y=x20

    Solution

    dydx=20x19
    d2ydx2=380x18


    Q3. y=xcosx

    Solution

    Using product rule:

    dydx=cosxxsinx

    Now differentiate again:

    d2ydx2=sinx(sinx+xcosx)
    d2ydx2=2sinxxcosx


    Q4. y=logx

    Solution

    dydx=1x
    d2ydx2=1x2


    Q5. y=x3logx

    Solution

    dydx=3x2logx+x2
    d2ydx2=6xlogx+5x


    Q6. y=exsin5x

    Solution

    dydx=ex(sin5x+5cos5x)
    d2ydx2=ex(24sin5x+10cos5x)


    Q7. y=e6xcos3x

    Solutiondydx=e6x(6cos3x3sin3x)
    d2ydx2=e6x(27cos3x36sin3x)


    Q8. y=tan1x

    Solutiondydx=11+x2
    d2ydx2=2x(1+x2)2


    Q9. y=log(logx)

    Solutiondydx=1xlogx
    d2ydx2=logx+1x2(logx)2


    Q10. y=sin(logx)

    Solutiondydx=cos(logx)x
    d2ydx2=cos(logx)sin(logx)x2


    Q11. If y=5cosx3sinx, show that d2ydx2+y=0

    Solution

    dydx=5sinx3cosx
    d2ydx2=5cosx+3sinx

    Now,d2ydx2+y=(5cosx+3sinx)+(5cosx3sinx)

    d2ydx2+y=0

    Hence proved

  • Exercise-5.6, Class 12th, Maths, Chapter 5, NCERT

    If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx.

    Question 1

    If x and y are connected parametrically by the equations:

    x=2at2,y=at4

    Find dydx without eliminating the parameter.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=ddt(2at2)=4at
    dydt=ddt(at4)=4at3

    Now apply the formula:

    dydx=dydtdxdt
    dydx=4at34at=t2

    Final Answer

    dydx=t2


    Question 2

    Ifx=acosθ,y=bcosθ

    find dydx.

    Solution

    Differentiate w.r.t. θ:

    dxdθ=asinθ
    dydθ=bsinθ

    Apply:

    dydx=dydθdxdθ
    dydx=bsinθasinθ

    dydx=ba

    Final Answer

    dydx=ba


    Question 3

    Ifx=sint,y=cos2t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=cost

    dydt=ddt(cos2t)=2sin2t

    Apply parametric derivative formula:

    dydx=dydtdxdt
    dydx=2sin2tcost

    Now use identity:

    sin2t=2sintcost

    So:dydx=2(2sintcost)cost
    dydx=4sint


    Question 4

    Ifx=4t,y=4t

    find dydx.

    Solution

    Differentiate both equations with respect to parameter t:

    dxdt=4
    dydt=ddt(4t)=4t2

    Now apply:

    dydx=dydtdxdt
    dydx=4t24
    dydx=1t2


    Question 5

    Ifx=cosθcos2θ,y=sinθsin2θ

    find dydx.

    Solution

    Differentiate both equations with respect to θ:

    Differentiate x

    dxdθ=ddθ(cosθ)ddθ(cos2θ)
    =sinθ(sin2θ)(2)
    =sinθ+2sin2θ

    Differentiate y

    dydθ=ddθ(sinθ)ddθ(sin2θ)
    =cosθ(2cos2θ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=cosθ2cos2θsinθ+2sin2θ


    Question 6

    Ifx=a(θsinθ),y=a(1+cosθ)

    find dydx.

    Solution

    Differentiate both x and y with respect to θ:

    Differentiate x

    dxdθ=a(ddθ(θ)ddθ(sinθ))
    =a(1cosθ)

    Differentiate y

    dydθ=addθ(1+cosθ)
    =a(0sinθ)
    =asinθ

    Apply the formula:

    dydx=dydθdxdθ
    dydx=asinθa(1cosθ)
    dydx=sinθ1cosθ

    Use identity:

    1cosθ=2sin2θ2,sinθ=2sinθ2cosθ2
    dydx=2sinθ2cosθ22sin2θ2
    =cosθ2sinθ2
    =cotθ2


    Question 7

    If

    x=sin3tcos2t,y=cos3tcos2t

    Solution 

    Rewrite x and y as:

    x=sin3t(cos2t)1/2,y=cos3t(cos2t)1/2

    Divide y by x:

    yx=cos3tsin3t=cot3t

    Take cube root:

    (yx)1/3=cottLet:

    u=tant=(xy)1/3Differentiate implicitly:

    sec2tdtdx=13(xy)2/3yxdydxy2

    dydx=cot3t


    Question 8

    Ifx=a(cost+logtant2),y=asint

    find dydx.

    Solution 

    Differentiate both x and y with respect to t.

    Differentiate y

    y=asint

    dydt=acost

    Differentiate x

    x=a(cost+logtant2)

    dxdt=a(sint+ddtlogtant2)

    Now recall the identity:

    ddt(logtant2)=1sint

    So:

    dxdt=a(sint+1sint)
    dxdt=a(sin2t+1sint)
    dxdt=a(1sin2tsint)
    dxdt=a(cos2tsint)
    dxdt=acos2tcsct

    Now apply parametric formula

    dydx=dydtdxdtdydx=acostacos2tcsctCancel a:

    dydx=costsintcos2t

    dydx=sintsect

    dydx=tant


    Question 9

    If

    x=asecθ,y=btanθ

    find dydx.

    Solution

    Differentiate both with respect to θ:

    Differentiate x

    dxdθ=asecθtanθ

    Differentiate y

    dydθ=bsec2θ

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=bsec2θasecθtanθ
    dydx=bsecθatanθ
    dydx=basecθtanθUse identity:

    secθtanθ=cscθThus:

    dydx=bacscθ


    Question 10

    If

    x=a(cosθ+θsinθ),y=a(sinθθcosθ)

    find dydx.

    Solution 

    Differentiate x and y with respect to θ.

    Differentiate x

    x=a(cosθ+θsinθ)

    Apply product rule to θsinθ:

    dxdθ=a(sinθ+sinθ+θcosθ)

    dxdθ=a(θcosθ)

    Differentiate y

    y=a(sinθθcosθ)
    dydθ=a(cosθ(cosθθsinθ))

    dydθ=a(θsinθ)

    Apply parametric derivative formula

    dydx=dydθdxdθ
    dydx=aθsinθaθcosθ

    Cancel aθ:

    dydx=sinθcosθ
    dydx=tanθ


    Question

    Ifx=asin1t,y=acos1t

    show that

    dydx=yx

    Solution 

    First rewrite expressions using exponent rules.

    x=(asin1t)1/2=a12sin1t
    y=(acos1t)1/2=a12cos1t

    Differentiate w.r.t. t using log differentiation:

    Differentiate x

    logx=12(sin1t)loga

    Differentiate:

    1xdxdt=12loga11t2

    dxdt=xloga21t2

    Differentiate y

    logy=12(cos1t)loga

    Differentiate:

    1ydydt=12loga11t2

    dydt=yloga21t2

    Now apply parametric derivative formula

    dydx=dy/dtdx/dt
    dydx=yloga21t2xloga21t2

    Cancel common factors:

    dydx=yx

     

     

     

  • Exercise-5.5, Class 12th, Maths, Chapter 5, NCERT

    Question 1

    Differentiate the following function w.r.t. x:

    y=cosxcos2xcos3x

    Solution

    Given:

    y=cosxcos2xcos3x

    This is a product of three functions.
    Use product rule:

    (uvw)=uvw+uvw+uvw

    Let:

    u=cosx,v=cos2x,w=cos3x

    Then:

    u=sinx,v=2sin2x,w=3sin3x

    Applying product rule:

    y=uvw+uvw+uvw
    y=(sinx)(cos2x)(cos3x)+(cosx)(2sin2x)(cos3x)

    +(cosx)(cos2x)(3sin3x)
    y=sinxcos2xcos3x2cosxsin2xcos3x3cosxcos2xsin3x


    Question 2

    Differentiate the following w.r.t. x:

    y=(x1)(x2)(x3)(x4)(x5)

    Solution 

    Rewrite using exponent form:

    y=((x1)(x2)(x3)(x4)(x5))1/2

    Taking log on both sides (log differentiation method):

    logy=12[log(x1)+log(x2)log(x3)log(x4)log(x5)]

    Differentiate w.r.t. x:

    1ydydx=12[1x1+1x21x31x41x5]

    Multiply both sides by y:

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]

    Final Answer 

    dydx=12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]


     

    Question 3

    Differentiate w.r.t. x:

    y=(logx)cosx

    Solution :

    Take natural logarithm on both sides:

    logy=cosxlog(logx)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side (product rule):

    ddx(cosxlog(logx))=sinxlog(logx)+cosx1logx1x

    So:

    1ydydx=sinxlog(logx)+cosxxlogx

    Multiply both sides by y:

    dydx=y[sinxlog(logx)+cosxxlogx]

    Substitute y=(logx)cosx:

    dydx=(logx)cosx[cosxxlogxsinxlog(logx)]


    Question 4

    Differentiate w.r.t. x:

    y=xx2sinx

    Solution :

    The second term is simple to differentiate.
    The first term xx requires logarithmic differentiation.

    Let:

    u=xx

    Taking log on both sides:

    logu=xlogx

    Differentiate w.r.t. x:

    Left side:1ududx

    Right side (product rule):

    ddx(xlogx)=1logx+x1x=logx+1

    So:

    1ududx=logx+1
    dudx=xx(logx+1)

    Now differentiate the whole expression:

    Given:y=xx2sinx

    dydx=xx(logx+1)2cosx


    Question 5

    Differentiate w.r.t. x:

    y=(x+3)2(x+4)3(x+5)4

    Solution

    Taking logarithm on both sides:

    logy=2log(x+3)+3log(x+4)+4log(x+5)

    Differentiate both sides w.r.t. x:

    Left side:

    1ydydx

    Right side:

    21x+3+31x+4+41x+5

    So:1ydydx=2x+3+3x+4+4x+5

    Multiply both sides by y:

    dydx=(x+3)2(x+4)3(x+5)4(2x+3+3x+4+4x+5)


    Question 6

    Differentiate w.r.t. x:

    y=(1+1x)(1+1x2)(1+1x3)

    Solution 

    Take logarithm on both sides:

    logy=log(1+1x)+log(1+1x2)+log(1+1x3)

    Differentiate both sides w.r.t. x:

    Left side:1ydydx

    Right side (chain rule):

    ddxlog(1+1x)=11+1x(1x2)=1x(x+1)

    Similarly:

    ddxlog(1+1x2)=11+1x2(2x3)=2x2(x2+1)

    ddxlog(1+1x3)=11+1x3(3x4)=3x3(x3+1)

    So:

    1ydydx=1x(x+1)2x2(x2+1)3x3(x3+1)

    Multiply both sides by y:

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]

    Final Answer

    dydx=(1+1x)(1+1x2)(1+1x3)[1x(x+1)2x2(x2+1)3x3(x3+1)]


    Question 7

    Differentiate w.r.t. x:

    y=(logx)x+xlogx

    Solution :

    Since the expression is the sum of two terms, differentiate them separately.

    Part 1: Differentiate u=(logx)x

    Take logarithm on both sides:

    logu=xlog(logx)

    Differentiate:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(logx)]=log(logx)+x1logx1x=log(logx)+1logx

    So:

    dudx=(logx)x[log(logx)+1logx]

    Part 2: Differentiate v=xlogx

    Let:v=xlogx

    Take logarithm:

    logv=logxlogx=(logx)2

    Differentiate:

    Left side:1vdvdx

    Right side:

    2logx1x=2logx

    Thus:

    dvdx=xlogx2logxx

    Combine (since y=u+v)

    dydx=(logx)x[log(logx)+1logx]+xlogx2logxx


    Question 8

    Differentiate w.r.t. x:

    y=(sinx)x+sin1x

    Solution

    Part 1: Differentiate (sinx)x

    Let

    u=(sinx)x

    Take logarithm:

    logu=xlog(sinx)

    Differentiate both sides:

    Left side:1ududx

    Right side (product rule):

    ddx[xlog(sinx)]=log(sinx)+x1sinxcosx

    =log(sinx)+xcotx

    So:dudx=(sinx)x[log(sinx)+xcotx]

    Part 2: Differentiate sin1x

    ddx(sin1x)=11x2

    Final Derivative

    dydx=(sinx)x[log(sinx)+xcotx]+11x2


    Question 9

    Differentiate w.r.t. x:

    y=xsinx+(sinx)cosx

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xsinx,v=(sinx)cosx

    Part 1: Differentiate u=xsinx

    Take log on both sides:

    logu=sinxlogx

    Differentiate:

    1ududx=cosxlogx+sinx1x

    So:

    dudx=xsinx(cosxlogx+sinxx)

    Part 2: Differentiate v=(sinx)cosx

    Take log:

    logv=cosxlog(sinx)

    Differentiate (product rule):

    1vdvdx=sinxlog(sinx)+cosxcosxsinx
    =sinxlog(sinx)+cosxcotx

    So:dvdx=(sinx)cosx[cosxcotxsinxlog(sinx)]

    Final Derivative

    dydx=xsinx(cosxlogx+sinxx)+(sinx)cosx[cosxcotxsinxlog(sinx)]


    Question 10

    Differentiate w.r.t. x:

    y=xxcosx+x2+1x21

    Solution 

    Split into two parts:

    y=u+v

    where

    u=xxcosx,v=x2+1x21

    Part 1: Differentiate u=xxcosx

    Take log both sides:

    logu=xcosxlogx

    Differentiate:

    Left side:

    1ududx

    Right side (product rule):

    ddx[xcosxlogx]=cosxlogx+x(sinx)logx+xcosx1x

    =cosxlogxxsinxlogx+cosx

    =cosx(logx+1)xsinxlogx

    So:

    dudx=xxcosx[cosx(logx+1)xsinxlogx]

    Part 2: Differentiate v=x2+1x21

    Use quotient rule:

    v=(x21)(2x)(x2+1)(2x)(x21)2

    =2x(x21x21)(x21)2

    =2x(2)(x21)2

    =4x(x21)2

    Final Derivative

    dydx=xxcosx[cosx(logx+1)xsinxlogx]+4x(x21)2


    Question 11 

    Differentiate w.r.t. x:

    y=(xcosx)x+(xsinx)1/x

    Solution

    Part 1: Let

    u=(xcosx)x

    Taking log:

    logu=xlog(xcosx)

    Differentiate:

    1ududx=log(xcosx)+x1xcosx(cosxxsinx)

    =log(xcosx)+cosxxsinxxcosx

    =log(xcosx)+1xtanx

    Thus:

    dudx=(xcosx)x[log(xcosx)+1xtanx]

    Part 2: Let

    v=(xsinx)1/x

    Taking log:

    logv=1xlog(xsinx)

    Differentiate:

    1vdvdx=1x2log(xsinx)+1xsinx+xcosxxsinx
    =log(xsinx)x2+sinx+xcosxx2sinx

    =log(xsinx)x2+1x2+cosxxsinx

    Thus:

    dvdx=(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]

    Answer

    dydx=(xcosx)x[log(xcosx)+1xtanx]+(xsinx)1/x[log(xsinx)x2+1x2+cosxxsinx]


    Question 12

    Differentiate with respect to x:

    xy+yx=1

    This is an implicit function (y also depends on x), so we will use implicit differentiation + logarithmic differentiation.

    Solution :

    Differentiate both sides w.r.t. 

    x:

    Step 1: Differentiate xy

    Write:

    xy=eylogx

    Differentiate:

    ddx(xy)=xyddx(ylogx)

    =xy(logxdydx+yx)

    Step 2: Differentiate yx

    Write:

    yx=exlogy

    Differentiate:

    ddx(yx)=yxddx(xlogy)
    =yx(logy+x1ydydx)

    =yx(logy+xydydx)

    Step 3: Differentiate RHS

    ddx(1)=0

    Step 4: Combine all terms

    xy(logxdydx+yx)+yx(logy+xydydx)=0

    Now collect dydx terms together:

    xylogxdydx+yxxydydx=xyyxyxlogy

    Factor out dydx:

    dydx(xylogx+yxxy)=(yxyx+yxlogy)

    Final Answer

    dydx=(yxyx+yxlogy)xylogx+xyyx

    Or more neatly:

    dydx=(yxxy+yxlogy)xylogx+xyyx


    Question 13

    Differentiate w.r.t. x:

    yx=xy

    This is an implicit relation involving both x and y, so we will use logarithmic implicit differentiation.

    Solution 

    Given:

    yx=xy

    Take natural log on both sides:

    log(yx)=log(xy)

    Apply log rule: log(ab)=bloga

    xlogy=ylogx

    Differentiate both sides w.r.t. x

    Left side:

    ddx(xlogy)=1logy+x1ydydx

    Right side:

    ddx(ylogx)=dydxlogx+y1x

    Arrange terms

    logy+xydydx=logxdydx+yx

    Bring all dydx terms to one side:

    xydydxlogxdydx=yxlogy

    Factor out dydx:

    dydx(xylogx)=yxlogy

    Final Answer

    dydx=yxlogyxylogx


    QUESTION 14

    Differentiate with respect to x:

    (cosx)y=(cosy)x

    Solution:

    Take logarithm on both sides:

    log((cosx)y)=log((cosy)x)

    Using the rule log(ab)=bloga:

    ylog(cosx)=xlog(cosy)

    Differentiate both sides w.r.t. x:

    Left side:

    ddx[ylog(cosx)]=dydxlog(cosx)+y1cosx(sinx)

    =dydxlog(cosx)ytanx

    Right side:

    ddx[xlog(cosy)]=1log(cosy)+x1cosy(siny)dydx

    =log(cosy)xtanydydx

    Rearranging terms:

    dydxlog(cosx)(xtanydydx)=log(cosy)+ytanx

    dydx(log(cosx)+xtany)=log(cosy)+ytanx

    dydx=log(cosy)+ytanxlog(cosx)+xtany


    QUESTION 15

    Differentiate w.r.t. x:

    xy=exy

    This is an implicit function, so we differentiate both sides w.r.t. x.

    Solution :

    Differentiate both sides:

    Left side

    ddx(xy)=xdydx+y

    (using product rule)

    Right side

    ddx(exy)=exyddx(xy)=exy(1dydx)

    Form the equation

    xdydx+y=exy(1dydx)

    Expand RHS:

    xdydx+y=exyexydydx

    Bring dydx terms together:

    xdydx+exydydx=exyy

    Factor out dydx:

    dydx(x+exy)=exyy

    dydx=exyyx+exy

    Since from the given equation:

    xy=exy

    Replace exy in the derivative:

    dydx=xyyx+xy

    Factor numerator and denominator:

    =y(x1)x(1+y)


    QUESTION 16

    Find the derivative of the function

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)

    and hence find f(1).

    SOLUTION 

    Take logarithm on both sides

    logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)

    Differentiate w.r.t. x:

    f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8

    Multiply both sides by f(x):

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Final derivative 

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]

    Now find f(1)

    Substitute x=1:

    First compute f(1):

    f(1)=(1+1)(1+12)(1+14)(1+18)=2222=16

    Now compute the bracket part:

    11+1+211+1+4131+1+8171+1
    =12+22+42+82

    =12+1+2+4=12+7=152

    Therefore:

    f(1)=f(1)152

    f(1)=16152=815=120

    f(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]
    f(1)=120


    QUESTION 17

    Differentiate the function:

    y=(x25x+8)(x3+7x+9)by:

    (i) Product rule

    (ii) Expanding the product

    (iii) Logarithmic differentiation

    and check that all answers are the same.

    (i) DIFFERENTIATION BY PRODUCT RULE

    Let:

    u=x25x+8,v=x3+7x+9

    u=2x5,v=3x2+7

    Using product rule:

    y=uv+uv

    y=(2x5)(x3+7x+9)+(x25x+8)(3x2+7)


    (ii) DIFFERENTIATION BY EXPANDING FIRST

    Expand:y=(x25x+8)(x3+7x+9)

    Multiply:

    =x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)

    =x5+7x3+9x25x435x245x+8x3+56x+72

    Combine like terms:

    y=x55x4+15x326x2+11x+72

    Differentiate term-wise:

    y=5x420x3+45x252x+11


    (iii) BY LOGARITHMIC DIFFERENTIATION

    y=(x25x+8)(x3+7x+9)

    Take log:

    logy=log(x25x+8)+log(x3+7x+9)

    Differentiate:

    yy=2x5x25x+8+3x2+7x3+7x+9

    Multiply by y:

    y=(x25x+8)(x3+7x+9)[2x5x25x+8+3x2+7x3+7x+9]

    Simplify (cancel terms):

    y=(2x5)(x3+7x+9)+(3x2+7)(x25x+8)


    QUESTION 18

    If u,v,w are functions of x, prove that:

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (i) By repeated application of the product rule

    Let:

    y=uvw

    First consider:

    y=(uv)w

    Differentiate using product rule:

    dydx=d(uv)dxw+(uv)dwdx

    Now apply product rule again to d(uv)dx:

    d(uv)dx=dudxv+udvdx

    Substitute back:

    dydx=(dudxv+udvdx)w+uvdwdx

    Distribute w:

    dydx=dudxvw+udvdxw+uvdwdx

    Result (Method 1 final statement)

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    (ii) By logarithmic differentiation

    Given:

    y=uvw

    Take logarithm on both sides:

    logy=logu+logv+logw

    Differentiate:

    1ydydx=1ududx+1vdvdx+1wdwdx

    Multiply both sides by y=uvw:

    dydx=uvw(1ududx+1vdvdx+1wdwdx)

    Distribute:

    dydx=vwdudx+uwdvdx+uvdwdx

    Final Answer

    ddx(uvw)=dudxvw+udvdxw+uvdwdx

    This verifies the required identity by both methods.

    Conclusion

    Yes, both methods give the same derivative result:

    ddx(uvw)=uvw+uvw+uvw

     

     

     

     

     

  • Exercise-5.4, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the following w.r.t. x:

    Question 1

    Differentiate:

    y=exsinxSolution

    This is a quotient, so use the Quotient Rule:

    ddx(uv)=vuuvv2

    Let:

    u=ex,v=sinx

    Then:

    u=ex,v=cosx

    Apply the rule:

    dydx=sinxexexcosx(sinx)2

    Factor out ex:

    dydx=ex(sinxcosx)sin2xFinal Answer

    dydx=ex(sinxcosx)sin2x


    Question 2

    Differentiate w.r.t. x:

    y=esin1xSolution

    Let:

    y=esin1x

    Use the chain rule:

    dydx=esin1xddx(sin1x)

    We know:

    ddx(sin1x)=11x2

    Therefore:

    dydx=esin1x11x2Final Answer

    dydx=esin1x1x2


    Question 3

    Differentiate:

    y=ex3Solution

    Use the chain rule:

    Let:

    y=eu,u=x3

    Then:

    dydu=eu,dudx=3x2

    Apply chain rule:

    dydx=eu3x2

    Substitute u=x3:

    dydx=3x2ex3Final Answer

    dydx=3x2ex3


    Question 4

    Differentiate with respect to x:

    y=sin(tan1(ex))Solution

    Let:

    u=tan1(ex)

    So:

    y=sin(u)

    Step 1: Differentiate outer function

    dydu=cosu

    Step 2: Differentiate inner function

    u=tan1(ex)

    Derivative of tan1t is 11+t2t

    So,

    dudx=11+(ex)2ddx(ex)

    dudx=11+e2x(ex)

    Step 3: Apply chain rule

    dydx=cos(u)dudx

    dydx=cos(tan1(ex))(ex1+e2x)

    We know the identity:

    cos(tan1t)=11+t2

    So:

    cos(tan1(ex))=11+e2x

    Final Simplified Answer

    dydx=ex(1+e2x)3/2Final Answer

    dydx=ex(1+e2x)3/2


    Question 5

    Differentiate w.r.t. x:

    y=log(cos(ex))Solution

    Use the chain rule multiple times.

    Let:

    y=log(cos(ex))

    Step 1: Differentiate outer logarithm

    dydx=1cos(ex)ddx(cos(ex))

    Step 2: Differentiate cos(ex)

    ddx(cos(ex))=sin(ex)ddx(ex)
    =sin(ex)ex

    Combine the results

    dydx=1cos(ex)(exsin(ex))
    dydx=exsin(ex)cos(ex)Final Answer

    dydx=extan(ex)


    Question 6

    Differentiate w.r.t. x:

    y=ex+ex2+ex3+ex4+ex5

    Solution

    Differentiate term-by-term:

        1. ddx(ex)=ex

       2. ddx(ex2)=ex2ddx(x2)=ex22x

       3. ddx(ex3)=ex3ddx(x3)=ex33x2

       4. ddx(ex4)=ex4ddx(x4)=ex44x3

       5. ddx(ex5)=ex5ddx(x5)=ex55x4

    Final Answer

    dydx=ex+2xex2+3x2ex3+4x3ex4+5x4ex5


    Question 7

    Differentiate w.r.t. x:

    y=ex,x>0Solution

    Rewrite the function:

    y=(ex)1/2=e12x

    Let:u=12x=12x1/2

    So:

    y=eu

    Differentiate

    dydu=eu
    dudx=1212x1/2=14x

    Apply chain rule:

    dydx=eududx

    dydx=e12x14xFinal Answer

    dydx=e12x4x,x>0


    Question 8

    Differentiate w.r.t. x:

    y=log(logx),x>1Solution

    This is a composition of two logarithmic functions, so apply the chain rule.

    Let:

    u=logx
    y=logu

    Differentiate step-by-step

    dydu=1u
    dudx=1x

    Apply chain rule

    dydx=dydududx
    dydx=1logx1xFinal Answer

    dydx=1xlogx,x>1


    Question 9

    Differentiate w.r.t. x:

    y=cosxlogx,x>0Solution

    This is a quotient, so apply the Quotient Rule:

    ddx(uv)=vuuvv2Let:

    u=cosx,v=logxThen:

    u=sinx

    v=1x

    Apply quotient rule

    dydx=(logx)(sinx)(cosx)(1x)(logx)2
    dydx=sinxlogxcosxx(logx)2Final Answer

    dydx=sinxlogxcosxx(logx)2,x>0


    Question 10

    Differentiate w.r.t. x:

    y=cos(logx+ex),x>0Solution

    Use the chain rule.

    Let:

    u=logx+exSo:

    y=cos(u)

    Differentiate outer function

    dydu=sin(u)

    Differentiate inner function

    dudx=ddx(logx)+ddx(ex)=1x+ex

    Apply chain rule

    dydx=sin(u)(1x+ex)

    Substitute back u=logx+ex:

    Final Answer

    dydx=sin(logx+ex)(1x+ex),x>0

     

     

  • Exercise-5.2, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the functions with respect to x in Exercises 1 to 8.

    1. Differentiate: sin(x2+5) with respect to x.


    Solution

    We need to differentiate the function:

    y=sin(x2+5)

    This is a composite function, so we will apply the Chain Rule

    Let:

    u=x2+5y=sin(u)

    Differentiate both:

    dydu=cos(u)dudx=2x

    Now apply Chain Rule:

    dydx=dydududx
    dydx=cos(u)2x

    Substitute u=x2+5:

    dydx=2xcos(x2+5)


    Question 2

    Differentiate with respect to x:

    cos(sinx)

    Solution

    Given:

    y=cos(sinx)

    This is a composite function, where:

    u=sinxy=cos(u)

    Now differentiate step-by-step:

    Step 1: Differentiate outer function

    dydu=sin(u)

    Step 2: Differentiate inner function

    dudx=cosx

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))cosx

    Substitute back u=sinx:

    dydx=sin(sinx)cosx


    Question 3

    Differentiate with respect to x:

    sin(ax+b)

    Solution

    Let:

    y=sin(ax+b)

    This is again a composite function, so we apply the Chain Rule.

    Step 1:

    Let the inner function:

    u=ax+b

    Then,

    y=sin(u)

    Step 2: Differentiate

    dydu=cos(u)
    dudx=a

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=cos(u)a

    Substitute u=ax+b:

    dydx=acos(ax+b)


    Question 4

    Differentiate with respect to x:

    ddx[sec(tan(x))

    Solution

    Let:

    u=tan(x)

    y=sec(u)

    Differentiate outer function

    dydu=sec(u)tan(u)

    Differentiate inner function

    u=tan(v),where v=x

    dudv=sec2(v)

    Differentiate 

    v=x
    dvdx=12x

    Apply Chain Rule

    dydx=dydududvdvdx
    dydx=sec(u)tan(u)sec2(v)12x

    Substitute u=tan(x), v=x:

    Final Answer

    ddx[sec(tan(x))]=12x  sec(tan(x))  tan(tan(x))  sec2(x)


    Question 5

    Differentiate with respect to x:

    sin(ax+b)cos(cx+d)Solution

    Let:y=sin(ax+b)cos(cx+d)

    This is a quotient, so we use the Quotient Rule:

    dydx=vdudxudvdxv2

    where

    u=sin(ax+b),v=cos(cx+d)

    Step 1: Differentiate u

    dudx=cos(ax+b)a

    Step 2: Differentiate v

    dvdx=sin(cx+d)c

    Step 3: Apply Quotient Rule

    dydx=cos(cx+d)(acos(ax+b))sin(ax+b)(csin(cx+d))cos2(cx+d)

    Simplify the numerator:

    =acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)

    Final Answer

    ddx(sin(ax+b)cos(cx+d))=acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)


    Question 6

    Differentiate with respect to x:

    cos(x3)sin2(x5)

    Solution

    The given function is a product, so we apply the Product Rule:

    ddx(uv)=uv+uv

    Let:

    u=cos(x3)
    v=sin2(x5)

    Step 1: Differentiate u=cos(x3)

    Using chain rule:

    u=sin(x3)3x2

    u=3x2sin(x3)

    Step 2: Differentiate v=sin2(x5)

    Rewrite:

    v=(sin(x5))2

    Let t=sin(x5), then v=t2

    dvdt=2t=2sin(x5)

    dtdx=cos(x5)5x4

    So,

    v=2sin(x5)5x4cos(x5)
    v=10x4sin(x5)cos(x5)

    Step 3: Apply Product Rule

    dydx=uv+uv

    Substitute:

    dydx=(3x2sin(x3))sin2(x5)+cos(x3)10x4sin(x5)cos(x5)

    Final Answer

    ddx[cos(x3)sin2(x5)]=3x2sin(x3)sin2(x5)+10x4cos(x3)sin(x5)cos(x5)


    Let’s differentiate step by step.


    Question 7

    y=2cot(x2)

    Rewrite using exponent form:

    y=2(cot(x2))1/2Solution

    Let:

    u=cot(x2)
    y=2u1/2

    Step 1: Differentiate outer function

    dydu=212u1/2=u1/2

    Step 2: Differentiate inner function

    u=cot(x2)

    Derivative of cott is csc2t

    So, by chain rule:

    dudx=csc2(x2)2x

    Apply Chain Rule

    dydx=dydududx

    dydx=u1/2(2xcsc2(x2))

    Substitute back u=cot(x2):

    dydx=2xcsc2(x2)(cot(x2))1/2

    Rewrite using square root:

    dydx=2xcsc2(x2)cot(x2)

    Final Answer

    ddx[2cot(x2)]=2xcsc2(x2)cot(x2)


    Question 8

    Differentiate with respect to x:

    cos(x)Solution

    Let:y=cos(x)

    This is a composite function, so we will apply the Chain Rule.

    Step 1: Identify inner and outer functions

    u=x=x1/2
    y=cos(u)

    Step 2: Differentiate each part

    dydu=sin(u)

    dudx=12x

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))12x

    Substitute u=x:

    Final Answer

    ddx[cos(x)]=sin(x)2x


    Question 9

    Prove that the function

    f(x)=x1,  xR

    is not differentiable at x=1.

    Solution

    First, write the function in piecewise form:

    f(x)={1x,if x<1x1,if x>1

    Also,

    f(1)=11=0

    To check differentiability at x=1, evaluate the left-hand derivative and the right-hand derivative.

    Left-hand derivative (LHD) at x=1

    For x<1, f(x)=1x

    ddx(1x)=1So,

    LHD at x=1=limh0f(1+h)f(1)h=1

    Right-hand derivative (RHD) at x=1

    For x>1, f(x)=x1

    ddx(x1)=1

    So,

    RHD at x=1=limh0+f(1+h)f(1)h=1

    Conclusion

    LHD=1,RHD=1

    Since:LHDRHD

      f(x)=x1 is not differentiable at x=1.

    Reason

    The graph of x1 has a sharp corner (cusp) at x=1, which makes the slope undefined there.


    Question 10

    Prove that the greatest integer function defined by

    f(x)=[x],0<x<3

    is not differentiable at x=1 and x=2.

    Solution:

    Understanding the function

    The function [x] defines the greatest integer less than or equal to x.

    For 0<x<3, the function behaves as follows:

    f(x)={0,0<x<11,1<x<22,2<x<3

    Continuity & Differentiability at x=1

    Left-hand limit approaching 1:

    For x<1, f(x)=0

    limx1f(x)=0

    Right-hand limit approaching 1:

    For x>1, f(x)=1

    limx1+f(x)=1

    Since

    limx1f(x)limx1+f(x),
    f(x) is discontinuous at x=1.Differentiability result

    A function must be continuous at a point to be differentiable there.

    Since f(x) is not continuous at x=1, it cannot be differentiable at x=1.

    f(x) is not differentiable at x=1.

    Similarly at x=2

    Left-hand limit approaching 2

    For x<2, f(x)=1

    limx2f(x)=1

    Right-hand limit approaching 2

    For x>2, f(x)=2

    limx2+f(x)=2

    Since

    limx2f(x)limx2+f(x),
    f(x) is discontinuous at x=2.Thus,

    f(x) is not differentiable at x=2.


  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 25

    Examine the continuity of the function

    f(x)={sinxcosx,if x01,if x=0

    Answer

    We are given the function:

    f(x)={sinxcosx,x01,x=0

    We need to examine the continuity at x=0.


    Step 1: Value of the function at x=0

    f(0)=1


    Step 2: Find the limit of f(x)as x0

    limx0(sinxcosx)

    We know standard limits:

    sin0=0,cos0=1

    So,

    limx0(sinxcosx)=01=1

    Step 3: Compare Limit and Function Value

    Expression Value
    limx0f(x) 1
    f(0) 1

    Both values are equal.

    Conclusion

    Since:

    limx0f(x)=f(0)The function f(x) is continuous at x=0.


    Question 26

    Find the value of k so that the function f is continuous at x=π2:

    f(x)={kcosxπ2x,xπ23,x=π2

    Solution

    For continuity at x=π2, we need:

    limxπ2f(x)=f(π2)

    Given:

    f(π2)=3

    Now compute the limit:

    limxπ2kcosxπ2x

    Substitute x=π2:

    kcos(π2)π2(π2)=k(0)0

    This is the indeterminate form 00, so apply L’Hôpital’s Rule.

    Differentiate numerator and denominator:

    limxπ2ksinx2=limxπ2ksinx2

    Now substitute x=π2:

    ksin(π2)2=k(1)2=k2

    For continuity:k2=3
    k=6

    Final Answer

    k=6


    Question 27

    Find the value of k so that the function f is continuous at x=2:

    f(x)={kx2,x23,x>2

    Solution

    For continuity at x=2:

    limx2f(x)=f(2)

    Step 1: Value at the point

    f(2)=k(22)=4k

    Step 2: Limit as x2

    Since the function changes definition at x=2, we use left-hand limit (LHL) and right-hand limit (RHL):

    Left-hand limit (LHL)

    limx2f(x)=limx2kx2=k(22)=4k

    Right-hand limit (RHL)

    limx2+f(x)=limx2+3=3

    Condition for continuity

    LHL=RHL=f(2)

    So,4k=3

    k=34

    Final Answer

    k=34

    Thus, the function is continuous at x=2 when k=34.


    Question 28

    Find the value of k so that the function f is continuous at x=π:

    f(x)={kx+1,xπcosx,x>π

    Solution

    For continuity at x=π, we require:

    limxπf(x)=f(π)

    Step 1: Value of the function at x=π

    Since x=π falls in the first part (xπ):

    f(π)=kπ+1Step 2: Left-hand limit (LHL)

    limxπf(x)=limxπ(kx+1)=kπ+1

    Step 3: Right-hand limit (RHL)

    limxπ+f(x)=limxπ+cosx=cosπ
    cosπ=1

    Condition for Continuity

    LHL=RHL=f(π)
    kπ+1=1

    Solve for k

    kπ=11=2

    k=2π


    Question 29

    Find the value of k so that the function f is continuous at x=5:

    f(x)={kx+1,x53x5,x>5

    Solution

    For continuity at x=5, we need:

    limx5f(x)=f(5)

    Step 1: Function value at the point

    Since x5:

    f(5)=k(5)+1=5k+1

    Step 2: Left-hand limit (LHL) as x5

    limx5f(x)=limx5(kx+1)=5k+1

    Step 3: Right-hand limit (RHL) as x5+

    limx5+f(x)=limx5+(3x5)=3(5)5=155=10

    Step 4: Apply continuity condition

    LHL=RHL=f(5)
    5k+1=10

    5k=9

    k=95


    Question 30

    Find the values of a and b such that the function

    f(x)={5,x2ax+b,2<x<1021,x10

    is continuous.

    Solution

    For continuity, the function must be continuous at:

    • x=2 (where left part meets the middle part)

    • x=10 (where middle part meets the right part)

    Continuity at x=2

    limx2f(x)=f(2)=5
    limx2+f(x)=a(2)+b=2a+b

    For continuity:

    2a+b=5(Equation 1)

    Continuity at x=10

    limx10f(x)=a(10)+b=10a+b
    f(10)=21

    For continuity:

    10a+b=21(Equation 2)

    Solve Equations (1) and (2)

    2a+b=5
    10a+b=21

    Subtract (1) from (2):

    (10a+b)(2a+b)=215
    8a=16

    a=2

    Substitute a=2 into Equation (1):

    2(2)+b=5

    4+b=5

    b=1


    Question 31

    Show that the function

    f(x)=cos(x2)

    is a continuous function.

    Solution

    We know that:

    • x2 is a polynomial → continuous everywhere

    • cosx is a continuous function for all real numbers

    A composition of two continuous functions is also continuous.

    Here,

    f(x)=cos(x2)=cos[g(x)]where g(x)=x2

    Since both g(x) and cosx are continuous, therefore:

    f(x)=cos(x2) is continuous for all xR

    Answer:

    cos(x2) is continuous everywhere.


    Question 32

    Show that the function

    f(x)=cosx

    is a continuous function.

    Solution

    • cosx is continuous for all real numbers

    • The absolute value function x is also continuous

    • The composition of continuous functions is continuous

    f(x)=cosx=g(x),where g(x)=cosx

    Since both g(x) and x are continuous,

    f(x)=cosx is continuous for all x

    Answer:

    cosx is continuous for all real x.


    Question 33

    Examine whether

    f(x)=sinx

    is a continuous function.

    Solution

    • x is continuous for all real numbers

    • sinx is continuous for all real numbers

    • Composition of continuous functions is continuous

    Thus:

    f(x)=sin(x)=sin(g(x)),g(x)=x

    Since both are continuous,

    sinx is continuous for all x

    Answer:

    sinx is continuous everywhere.


    Question 34

    Find all the points of discontinuity of

    f(x)=xx+1

    Solution

    Check where each absolute expression changes form.

    Break points occur where inside values become zero:

    x=0andx=1

    So evaluate function in intervals:

    Case 1: x<1

    x=x,x+1=(x+1)
    f(x)=x((x+1))=x+x+1=1

    Case 2: 1x<0

    x=x,x+1=x+1
    f(x)=x(x+1)=2x1

    Case 3: x0

    x=x,x+1=x+1
    f(x)=x(x+1)=1

    Check continuity at critical points

    At x=1

    limx1f(x)=1
    limx1+f(x)=2(1)1=21=1
    f(1)=2(1)1=1

    So continuous at x=1


    At x=0

    limx0f(x)=2(0)1=1
    limx0+f(x)=1
    f(0)=1

    So continuous at x=0


    Final Answer

    The function f(x)=xx+1 is continuous everywhere.

  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 13.

    Is the function defined by

    f(x)={x+5,if x1x5,if x>1

    a continuous function?

    Answer

    To check the continuity of the function at x=1, evaluate the following:

    Value of the function at x=1

    Since x1:

    f(1)=1+5=6

    Left-hand limit (LHL) as x1

    limx1(x+5)=6

    Right-hand limit (RHL) as x1+

    limx1+(x5)=4

    Comparison

    LHL=6,RHL=4,f(1)=6

    Since

    LHLRHL

    Final Answer

    The function is not continuous at x=1 because the left-hand limit and right-hand limit are not equal.


    Discuss the continuity of the function f, where f is defined by

    Question 14.

    Discuss the continuity of the function

    f(x)={3,if 0x14,if 1<x<35,if 3x10

    Answer

    To check continuity, we examine the points where the definition of the function changes:
    at x=1 and x=3.

    Continuity on the intervals

    • On [0,1]: f(x)=3 (a constant function → continuous).

    • On (1,3): f(x)=4 (constant function → continuous).

    • On [3,10]: f(x)=5 (constant function → continuous).

    So the only possible discontinuities are at the endpoints where the pieces join.


    Check continuity at x=1

    Left-hand limit (as x1)

    limx1f(x)=3

    Right-hand limit (as x1+)

    limx1+f(x)=4

    Value of the function

    f(1)=3

    Since

    limx1f(x)=3andlimx1+f(x)=4

    Left-hand limit ≠ Right-hand limit
    function is discontinuous at x=1


    Check continuity at x=3

    Left-hand limit (as x3)

    limx3f(x)=4

    Right-hand limit (as x3+)

    limx3+f(x)=5

    Value of the function

    f(3)=5

    Since

    45

    function is discontinuous at x=3.


    Final Conclusion

    The function f(x) is:

    • Continuous on each open interval (0,1), (1,3), and (3,10)

    • Discontinuous at the points x=1 and x=3


    Question 15

    Discuss the continuity of the function f defined by:

    f(x)={2x,if x<00,if 0<x<14x,if x>1

    Answer

    This is a piecewise function, and we need to check continuity at the points where the definition changes, i.e., at x=0 and x=1.


    Continuity for x<0, 0<x<1, and x>1

    In each interval, the function is a polynomial (linear function), and polynomials are continuous everywhere.
    So, f(x) is continuous within each interval.


    Check continuity at x=0

    Left-hand limit (LHL) as x0

    Using 2x:

    limx0f(x)=limx02x=0

    Right-hand limit (RHL) as x0+

    Using 0:

    limx0+f(x)=0

    Value of the function at x=0

    Notice: The function definition does not include x=0 in any case, so:

    f(0) does not exist

    Conclusion at x=0

    Even though

    LHL=RHL=0,

    the value of the function at x=0 is not defined.
    So, the function is not continuous at x=0.


    Check continuity at x=1

    Left-hand limit (LHL) as x1

    Using 0:

    limx1f(x)=0

    Right-hand limit (RHL) as x1+

    Using 4x:

    limx1+f(x)=4(1)=4

    Value of the function at x=1

    Not defined in any case, so:

    f(1) does not exist

    Conclusion at x=1

    Since

    LHL=04=RHL

    The limit does not exist. Therefore, the function is not continuous at x=1.

    Final Conclusion

    The function f(x) is:

    • Continuous within each open interval (,0), (0,1), and (1,)

    • Not continuous at x=0 (because f(0) is not defined)

    • Not continuous at x=1 (because left-hand and right-hand limits are not equal and f(1) is not defined)


    Question 16

    Discuss the continuity of the function f(x), where

    f(x)={2,if x12x,if 1<x12,if x>1

    Answer:

    To check continuity, we must examine the possible points of discontinuity—here the function changes its definition at x=1 and x=1.
    So, we check continuity at these points.


    Continuity at x=1

    Value of the function at x=1

    Since x1:

    f(1)=2

    Left-hand limit (LHL) as x1

    Using 2:

    limx1f(x)=2

    Right-hand limit (RHL) as x1+

    Using 2x:

    limx1+2x=2(1)=2

    Conclusion

    LHL=RHL=f(1)=2

    So, the function is continuous at x=1.


    Continuity at x=1

    Value of the function at x=1

    Using 2x:

    f(1)=2(1)=2

    Left-hand limit (LHL) as x1

    Using 2x:

    limx12x=2

    Right-hand limit (RHL) as x1+

    Using constant 2:

    limx1+f(x)=2

    Conclusion

    LHL=RHL=f(1)=2

    Thus, the function is continuous at x=1.


    Final Conclusion

    Since the function is continuous at both points where it changes its definition (x=1 and x=1), and there are no other breaks, gaps, or jumps:

    The function f(x) is continuous for all real values of x.

    Question 17

    Find the relationship between a and b so that the function f(x) defined by

    f(x)={ax+1,if x3bx+3,if x>3

    is continuous at x=3.

    Answer

    To ensure continuity at x=3, we require:

    Left-hand limit=Right-hand limit=f(3)

    Value of the function at x=3

    Using the first expression since x3:

    f(3)=a(3)+1=3a+1

    Left-hand Limit (LHL) as x3

    limx3f(x)=3a+1

    Right-hand Limit (RHL) as x3+

    Using bx+3:

    limx3+f(x)=b(3)+3=3b+3

    Condition for continuity

    3a+1=3b+3

    Solving

    3a3b=2
    ab=23

    Final Answer

    ab=23

    This is the required relationship between a and b for f(x) to be continuous at x=3.


    Question 18

    For what value of λ is the function defined by

    f(x)={λ(x22x),if x04x+1,if x>0

    continuous at x=0? What about at x=1?

    Answer

    Checking continuity at x=0

    Value of the function at x=0

    Since x0:

    f(0)=λ(0220)=λ(0)=0

    Left-hand limit (LHL)

    limx0λ(x22x)=λ(00)=0

    Right-hand limit (RHL)

    limx0+(4x+1)=4(0)+1=1

    Condition for continuity

    LHL=RHL=f(0)

    So,

    0=1

    This statement is never true, so no real value of λ can make the function continuous at x=0.


    Checking continuity at x=1

    At x=1, the value is taken from the second piece 4x+1, and there is no matching left-hand expression at 1, since the first part ends at x=0.
    Thus, the function is not defined in a neighborhood around 1 from the left side.

    Therefore, the function cannot be continuous at x=1.


    Final Conclusion

    There is no value of λ that makes the function continuous at x=0.
    The function is not continuous at x=1 because continuity cannot be checked.


    Question 19

    Show that the function g(x)=x[x] is discontinuous at all integral points.
    Here [x] denotes the greatest integer less than or equal to x.

    Answer

    Given Function

    g(x)=x[x]

    The expression x[x] represents the fractional part of x, denoted as {x}.
    Thus,

    g(x)={x}

    The fractional part function always satisfies:

    0{x}<1

    To show discontinuity at integer points

    Let x=n, where n is any integer.


    Left-hand limit (LHL) as xn

    When x approaches n from the left, x=nh where h0+.
    Then the greatest integer function gives:

    [x]=n1

    So,

    g(x)=x[x]=(nh)(n1)=1h

    Taking limit,

    limxng(x)=limh0+(1h)=1

    Right-hand limit (RHL) as xn+

    When approaching from the right, x=n+h, h0+, then

    [x]=n

    So,

    g(x)=(n+h)n=h

    Taking limit,

    limxn+g(x)=limh0+h=0


    Value of the function at x=n

    g(n)=n[n]=nn=0

    Comparison

    limxng(x)=1,limxn+g(x)=0,g(n)=0

    Since,

    limxng(x)limxn+g(x)

    The limit does not exist at x=n, and therefore, the function is discontinuous at every integer n.

    Final Conclusion

    g(x)=x[x] is discontinuous at all integral points.


    Question 20

    Is the function defined by

    f(x)=x2sinx+5

    continuous at x=π?

    Answer

    The function f(x)=x2sinx+5 is composed of the following functions:

    • x2 → a polynomial function (continuous for all real x)

    • sinx → a trigonometric function (continuous for all real x)

    • Constant 5 → continuous everywhere

    The sum or difference of continuous functions is also continuous for all real numbers.

    Therefore, f(x) is continuous everywhere, including at x=π.


    Check using limits

    Value at x=π:

    f(π)=π2sinπ+5=π20+5=π2+5

    Limit as xπ:

    limxπf(x)=limxπ(x2sinx+5)=π20+5=π2+5

    Comparison

    limxπf(x)=f(π)

    So the function is continuous at x=π.

    Final Answer

    Yes, the function is continuous at x=π.


    Question 21

    Discuss the continuity of the following functions:

    (a) f(x)=sinx+cosx
    (b) f(x)=sinxcosx
    (c) f(x)=sinxcosx


    Answer

    To discuss continuity, recall that:

    • sinx and cosx are continuous functions for all real values of x.

    • Sum, difference, and product of continuous functions are also continuous.

    So, we analyze each function:

    (a) f(x)=sinx+cosx

    • sinx is continuous for all xR

    • cosx is continuous for all xR

    The sum of two continuous functions is continuous.

    Conclusion

    f(x)=sinx+cosx is continuous for all real x.

    (b) f(x)=sinxcosx

    • Difference of continuous functions remains continuous.

    Conclusion

    f(x)=sinxcosx is continuous for all real x.

    (c) f(x)=sinxcosx

    • Product of two continuous functions is continuous.

    Conclusion

    f(x)=sinxcosx is continuous for all real x.


    Question 22

    Discuss the continuity of the cosine, cosecant, secant, and cotangent functions.

    Answer

    To discuss the continuity of these trigonometric functions, recall:

    • A function is continuous at a point if the limit exists and equals the value of the function at that point.

    • Discontinuity occurs where the function is not defined.


    Cosine Function

    f(x)=cosx

    • cosx is defined for all real values of x.

    • It is smooth and has no breaks or gaps.

    Conclusion

    cosx is continuous for all xR.


    Cosecant Function

    f(x)=cscx=1sinx

    • cscx is not defined where sinx=0.

    • sinx=0 at x=nπ, where n is any integer.

    Conclusion

    cscx is discontinuous at x=nπ.
    It is continuous for all other real values of x.


    Secant Function

    f(x)=secx=1cosx

    • secx is not defined where cosx=0.

    • cosx=0 at x=(2n+1)π2, where n is any integer.

    Conclusion

    secx is discontinuous at x=(2n+1)π2.
    It is continuous everywhere else.

    Cotangent Function

    f(x)=cotx=cosxsinx

    • cotx is not defined where sinx=0.

    • Similar to cosecant, discontinuity occurs at x=nπ.

    Conclusion

    cotx is discontinuous at x=nπ.
    It is continuous for all other real values of x.


    Question 23

    Find all points of discontinuity of

    f(x)={sinxx,if x<0x+1,if x0

    Answer

    The function changes its definition at x=0, so discontinuity (if any) must be checked at x=0.

    Step 1: Compute limit from the left side as x0

    Consider

    limx0sinxx

    We know the standard limit identity:

    limx0sinxx=1

    So,

    limx0f(x)=1

    Step 2: Compute right-hand limit as x0+

    From the second part f(x)=x+1 when x0:

    limx0+(x+1)=0+1=1

    Step 3: Value of the function at x=0

    Since x0,

    f(0)=0+1=1

    Comparison

    limx0f(x)=1,limx0+f(x)=1,f(0)=1

    Since all three are equal:

    limx0f(x)=f(0)

    Final Conclusion

    The function is continuous at x=0.

    There are no other points where the definition changes, and both components of the function are continuous in their respective intervals.

    Therefore, f(x) is continuous for all x.


    Question 24

    Determine if the function defined by

    f(x)={x2sin(1x),if x00,if x=0

    is continuous at x=0.


    Answer

    To check continuity at x=0, we need to verify:

    limx0f(x)=f(0)

    Given:

    f(0)=0

    Find the limit of f(x) as x0

    f(x)=x2sin(1x)

    We know that:

    1sin(1x)1

    Multiplying the entire inequality by x20:

    x2x2sin(1x)x2

    Now take the limit as x0:

    limx0x2=0andlimx0x2=0

    By Squeeze (Sandwich) Theorem:

    limx0x2sin(1x)=0

    Therefore:

    limx0f(x)=0=f(0)

    Final Conclusion

    Yes, the function f(x) is continuous at x=0.