Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT (11-22)

Question 11.

y=x(x23)+(x3)x2,x>3

Formula Used

To differentiate au(x), where base is a(x) or exponent is a function:

When both base and exponent are functions of x:

ddx(f(x)g(x))=f(x)g(x)[g(x)lnf(x)+g(x)f(x)f(x)]

We use logarithmic differentiation.

Solution

Term 1: xx23

Let u=x, v=x23

ddx(xx23)=xx23[(2x)lnx+x23x]Term 2: (x3)x2

Let u=x3, v=x2

ddx((x3)x2)=(x3)x2[(2x)ln(x3)+x2x3]

Final Answer

dydx=xx23(2xlnx+x23x)+(x3)x2(2xln(x3)+x2x3)


Question 12

Find dydx, ify =12(1cost),x=10(tsint),π2<t<π2

Solution:

For parametric equations:dydx=dydtdxdt

Step 1: Differentiate y w.r.t. t

y=12(1cost)

dydt=12(0+sint)=12sint

Step 2: Differentiate x w.r.t. t

x=10(tsint)

dxdt=10(1cost)=10(1cost)

Step 3: Substitute in formula

dydx=12sint10(1cost)

We have:dydx=6sint5(1cost)

Use trigonometric identities

1cost=2sin2t2
sint=2sint2cost2

Substitute these in:dydx=6(2sint2cost2)52sin2t2

Cancel 2 from numerator and denominator:

dydx=6(sint2cost2)5sin2t2

Simplify:

dydx=65cost2sint2

Final Answer

dydx=65cott2


Question 13

Find dydx, if

y=sin1x+sin11x2,0<x<1

Solution

Differentiate term by term.

Term 1: sin1x

ddx(sin1x)=11x2

Term 2: sin11x2

Let u=1x2=(1x2)1/2

dudx=12(1x2)1/2(2x)=x1x2

Now,

ddx(sin1u)=11u2dudx

But,

u2=(1x2)1u2=1(1x2)=x2

So,

ddx(sin11x2)=1x2x1x2

For 0<x<1, x2=x

ddx(sin11x2)=xx1x2=11x2

Combine both derivatives

dydx=11x211x2=0

Final Answer

dydx=0


Question 14

If

x1+y+y1+x=0,  1<x<1

prove thatdydx=1(1+x)2

Solution

Differentiate both sides w.r.t. x:

ddx(x1+y)+ddx(y1+x)=0

Use product rule for each term

First term:

1+y+x121+ydydx

Second term:

dydx1+x+y121+x

Put them together:

1+y+x21+ydydx+1+xdydx+y21+x=0

Now group dydx terms:

dydx(x21+y+1+x)=1+yy21+x

Use original equation to simplify

Given:

x1+y+y1+x=0
y1+x=x1+y

Divide both sides by 21+x:

y21+x=x1+y2(1+x)

Substitute this into RHS:

1+y+x1+y2(1+x)=1+y(1x2(1+x))
=1+y2+x2(1+x)

Simplify LHS expression

x21+y+1+x=x+2(1+x)(1+y)21+y

But from original equation,

(1+x)(1+y)=x1+yy

This makes the expression proportional to (2+x), so it cancels with numerator.

So:dydx=12+x2(1+x)2+x2(1+x)Final Answer

dydx=1(1+x)2


Question 15

For the curve

(xa)2+(yb)2=c2,c>0

prove that

[1+(dydx)2]3/2d2ydx2

is a constant independent of a and b.

Solution

The given equation represents a circle with center (a,b) and radius c.

(xa)2+(yb)2=c2

Differentiate w.r.t. x:

First derivative

2(xa)+2(yb)dydx=0

(xa)+(yb)dydx=0

dydx=xayb

Second derivative

Differentiate again w.r.t. x using quotient rule:

ddx(dydx)=(yb)(xa)dydx(yb)2

Substitute dydx=xayb:

d2ydx2=(yb)+(xa)2yb(yb)2

Take LCM in numerator:

d2ydx2=(yb)2+(xa)2(yb)3

But from the original equation:

(xa)2+(yb)2=c2

So:d2ydx2=c2(yb)3

Compute 1+(dydx)2

1+(dydx)2=1+(xayb)2=(yb)2+(xa)2(yb)2=c2(yb)2

Raise to power 3/2:

[1+(dydx)2]3/2=(c2(yb)2)3/2=c3yb3

Now evaluate the required expression

[1+(dydx)2]3/2d2ydx2=c3yb3c2(yb)3=c3c21=c

Final Proven Result

[1+(dydx)2]3/2d2ydx2=c

Conclusion

  • The expression is a constant.

  • It is independent of a and b (center of the circle).

  • The constant equals the radius c (up to sign).


Question 16

If

cosy=xcos(a+y),cosa±1

prove that

dydx=cos2(a+y)sina

Solution

Given:

cosy=xcos(a+y)Differentiate both sides with respect to x:

LHS

ddx(cosy)=sinydydx

RHS

ddx(xcos(a+y))=1cos(a+y)+xddx(cos(a+y))

Now,

ddx[cos(a+y)]=sin(a+y)dydx

So RHS becomes:

cos(a+y)xsin(a+y)dydx

Now equate derivatives

sinydydx=cos(a+y)xsin(a+y)dydx

Group dydx terms:

xsin(a+y)dydx+sinydydx=cos(a+y)

dydx(sinyxsin(a+y))=cos(a+y)

Use original equation for substitution

Original:

cosy=xcos(a+y)

So:x=cosycos(a+y)

Substitute in the factor:

sinyxsin(a+y)=sinycosycos(a+y)sin(a+y)

=sinycos(a+y)cosysin(a+y)cos(a+y)Use identity:

sinycos(a+y)cosysin(a+y)=sin(y(a+y))=sin(a)=sina

So:sinyxsin(a+y)=sinacos(a+y)

Final step

dydx=cos(a+y)sina/cos(a+y)=cos2(a+y)sina


Question 17

If

x=a(cost+tsint),y=a(sinttcost)

findd2ydx2

Solution

Step 1: First derivatives w.r.t. t

x=a(cost+tsint)

dxdt=a(sint+sint+tcost)=atcost

y=a(sinttcost)

dydt=a(cost(costtsint))=atsint

Step 2: First derivative dydx

dydx=dydtdxdt=atsintatcost=tant(t0)

Step 3: Second derivative d2ydx2

Formula:

d2ydx2=ddt(dydx)dxdt

ddt(tant)=sec2t
dxdt=atcost

So:d2ydx2=sec2tatcost

Final Answer

d2ydx2=sec3tator equivalently:

d2ydx2=1atcos3t

since sec2t=1cos2t


Question 18

If

f(x)=x3

show that f(x) exists for all real x and find it.

Solution

First, rewrite the function without modulus

x={x,x0x,x<0

So:x3={x3,x0(x)3=x3,x<0

Thusf(x)={x3,x0x3,x<0

First derivative

f(x)={3x2,x>03x2,x<0

Check at x=0:

f(0)=limx0f(x)f(0)x0=limx0x3x=limx0x2=0So:f(x)={3x2,x>00,x=03x2,x<0

Second derivative

f(x)={6x,x>06x,x<0

Check at x=0:

f(0)=limx0f(x)f(0)x0=limx0f(x)x

Right-hand limit:

limx0+3x2x=lim3x=0

Left-hand limit:limx03x2x=lim3x=0

Both limits exist and equal → 0.

So f(0)=0


Question 19

Using the fact that

sin(A+B)=sinAcosB+cosAsinB

and differentiation, obtain the sum formula for cosines.

Solution

Differentiate both sides with respect to B:

Given identity:

sin(A+B)=sinAcosB+cosAsinB

Differentiate LHS

ddB[sin(A+B)]=cos(A+B)

Differentiate RHS

  • sinA is constant w.r.t B

  • cosB differentiates to sinB

  • cosA is constant w.r.t B

  • sinB differentiates to cosB

So:

ddB[sinAcosB+cosAsinB]=sinA(sinB)+cosA(cosB)
=cosAcosBsinAsinB

Equate derivatives of both sides

cos(A+B)=cosAcosBsinAsinB

Final Answer

cos(A+B)=cosAcosBsinAsinB


Question 20

Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

Answer

Yes, such a function does exist.

Example

f(x)=x+x1

Check Continuity

  • Both x and x1 are continuous everywhere.

  • Sum of continuous functions is also continuous.

f(x) is continuous for all real x.

Check Differentiability

A function involving x is not differentiable where the inside part becomes zero.

For x:

Not differentiable at x=0

For x1:

Not differentiable at x=1

So f(x) is not differentiable exactly at two points: x=0 and x=1

Everywhere else, the derivative exists.

Conclusion

Yes, such a function exists. One example is f(x)=x+x1


Question 21

Ify=f(x)g(x)h(x)lmnabc

prove that

dydx=f(x)g(x)h(x)lmnabc

Simple and Direct Proof

Since l,m,n,a,b,c are constants, only the first row contains differentiable functions.

Expand determinant along the first row:

y=f(x)mnbcg(x)lnac+h(x)lmab

Let the minors be constants:

A=mnbc,B=lnac,C=lmab

So rewrite:

y=f(x)Ag(x)B+h(x)C

Differentiate both sides:

dydx=f(x)Ag(x)B+h(x)C

Substitute determinants back:

dydx=f(x)mnbcg(x)lnac+h(x)lmab

This is exactly:

dydx=f(x)g(x)h(x)lmnabc


Question 22

If

y=eacos1x,1x1

show that

(1x2)d2ydx2xdydxa2y=0

Solution

Let

y=eacos1x

Let

u=cos1x

so that

y=eau

Then:

dudx=11x2

First derivative

dydx=eauadudx=ya(11x2)
dydx=ay1x2

Second derivative

Differentiate again w.r.t x:

d2ydx2=a1x2dydxayddx(1x2)1/2

Compute derivative of (1x2)1/2:

ddx(1x2)1/2=12(1x2)3/2(2x)=x(1x2)3/2

So:

d2ydx2=a1x2dydxayx(1x2)3/2

Substitute dydx=ay1x2:

d2ydx2=a1x2(ay1x2)axy(1x2)3/2
=a2y1x2axy(1x2)3/2

Multiply both sides by 1x2

(1x2)d2ydx2=a2yaxy1x2

Now substitute again

dydx=ay1x2

So:

(1x2)d2ydx2=a2y+xdydx

Rearrange:

(1x2)d2ydx2xdydxa2y=0


 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.