Exercise-4.2, Class 12th, Maths, Chapter 4, NCERT

Question 1 (Area of triangles)

Find area of the triangle whose vertices are:
(i) (1,0),(6,0),(4,3)(ii) (2,7),(1,1),(10,8)

(iii) (2,3),(3,2),(1,8).

Method. Area =12x1(y2y3)+x2(y3y1)+x3(y1y2)

(i) x1=1,y1=0;  x2=6,y2=0;  x3=4,y3=3

S=121(03)+6(30)+4(00)

=123+18+0=12(15)=152.

(ii) (2,7),(1,1),(10,8)

S=122(18)+1(87)+10(71)

=1214+1+60=12(47)=472

(iii) (2,3),(3,2),(1,8)

S=122(2(8))+3((8)(3))+(1)((3)2)

=122015+5=12(30)=15


Question 2 (Collinearity)

Show that A(a,b+c),  B(b,c+a),  C(c,a+b) are collinear.

Solution. Points are collinear iff area of triangle ABC is zero. Compute

Δ=ab+c1bc+a1ca+b1=a((c+a)(a+b))+b((a+b)(b+c))+c((b+c)(c+a))

Simplify each bracket:

a(cb)+b(ac)+c(ba)=acab+abbc+bcac=0

Hence Δ=0 so A,B,C are collinear.


Question 3 (Values of k for area = 4)

Find k if area =4 for:
(i) (k,0),(4,0),(0,2)(ii) (2,0),(0,4),(0,k).

(i) Using determinant formula:

Δ=k(02)+4(20)+0(00)=2k+8.

Area =12Δ=4 ⁣2k+8 ⁣=8
So 2k+8=8 or 2k+8=8 giving k=0 or k=8
k=0 or 8

(ii)

Δ=2(4k)+0+  0=8+2k

128+2k=48+2k=8. So 8+2k=8 or 8+2k=8
gives k=8 or k=0
k=0 or 8.


Question 4 (Equation of a line using determinants)

(i) line joining (1,2) and (3,6).(ii) line joining (3,1) and (9,3).

Use determinant form for line through (x1,y1),(x2,y2)

xy1x1y11x2y21=0.

(i) xy1121361=0

x(26)y(13)+1(66)=4x+2y=0y=2x.

(ii) xy1311931=0

x(13)y(39)+1(93)=2x+6y=0x3y=0.


Question 5 (Find k from given area = 35)

If area of triangle is 35 with vertices (2,6),(5,4),(k,4)

The points (5,4) and (k,4) have same y-coordinate, so base =k5, height from (2,6) to line y=4 is 4(6)=10

Area =12baseheight=12k510=5k5=35
So k5=7k5=±7k=12 or k=2.

k=12 or k=2 (So the correct choice from the options is the pair 12,2)

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.