Exercise-4.3, Class 12th, Maths, Chapter 4, NCERT

1. Write minors and cofactors of the elements of the following determinants:

(i) Δ=2403

For a 2×2 determinant the minor Mij of element aij is the determinant left after deleting its row and column; for 2×2 deleting a row & column leaves a 1×1 number.

Elements and their minors:

  • a11=2:  M11=3. Cofactor A11=(1)1+1M11=+3

  • a12=4:  M12=0. Cofactor A12=(1)1+2M12=0=0

  • a21=0:  M21=4. Cofactor A21=(1)2+1M21=4

  • a22=3:  M22=2. Cofactor A22=(1)2+2M22=+2

(You can check: expansion along first row gives Δ=2A11+4A12=23+40=6, and direct determinant 2340=6)


(ii) Δ=acbd

Minors (each 1×1 entry):

  • M11=d,  A11=+d

  • M12=b,  A12=(1)1+2b=b

  • M21=c,  A21=(1)2+1c=c

  • M22=a,  A22=+a

(So cofactors matrix is (dbca))


2. Write minors and cofactors for the following 3×3 determinants:

(i) I3=100010001

We give minors Mij and cofactors Aij=(1)i+jMij

Because I3 is diagonal, minors are determinants of the 2×2submatrices:

Row 1:

  • M11=1001=1,  A11=+1

  • M12=0001=0,  A12=0=0

  • M13=0100=0,  A13=+0=0

Row 2:

  • M21=0001=0,  A21=0=0

  • M22=1001=1,  A22=+1

  • M23=1000=0,  A23=0=0

Row 3:

  • M31=0010=0,  A31=+0=0

  • M32=1000=0,  A32=0=0

  • M33=1001=1,  A33=+1

(So adj I3 = transpose of cofactor matrix = identity again.)


(ii) Δ=104351012

Compute minors (each is a 2×2 determinant) and cofactors:

Row 1:

  • M11=5112=5211=101=9,  A11=+9

  • M12=3102=3210=6,  A12=(1)1+26=6

  • M13=3501=3150=3,  A13=+3

Row 2:

  • M21=0412=0241=4,  A21=(1)2+1(4)=+4

  • M22=1402=1240=2,  A22=+2

  • M23=1001=1100=1,  A23=(1)2+31=1

Row 3:

  • M31=0451=0145=20,  A31=(1)3+1(20)=20
    (note sign: (1)4=+1, so A31=+(20)=20

  • M32=1431=1143=112=11,  A32=(1)3+2(11)=+11

  • M33=1035=1503=5,  A33=(1)3+35=+5

(You can verify determinant by expansion: Δ=1A11+0A12+4A13=19+0+43=9+12=21

Direct check yields same.)


3. Using cofactors of elements of the second row, evaluate

Δ=538201123

We will expand along the second row: Δ=a21A21+a22A22+a23A23

Compute the cofactors (minors first):

  • For a21=2: M21=3823=3382=916=7
    A21=(1)2+1M21=(7)=+7

  • For a22=0: M22=5813=5381=158=7
    A22=(1)2+2M22=+7

  • For a23=1: M23=5312=5231=103=7
    A23=(1)2+3M23=7

Now expansion:

Δ=2A21+0A22+1A23=27+0+1(7)=147=7

(You may check by any other expansion; result is 7.)


4. Using cofactors of elements of the third column, evaluate

Δ=111xyzyzx

We expand along third column: Δ=a13A13+a23A23+a33A33
where a13=1,  a23=z,  a33=x

Compute minors and cofactors:

  • A13=(1)1+3M13=(1)4M13=+M13
    M13=xyyz=xzy2

  • A23=(1)2+3M23=(1)5(M23)=M23 (Simpler: A23=M23)
    M23=11yz=1z1y=zy
    So A23=(zy)=yz

  • A33=(1)3+3M33=+M33
    M33=11xy=1y1x=yx
    So A33=yx

Now expand:

Δ=1(xzy2)+z(yz)+x(yx)

Simplify term-by-term:

Δ=xzy2+zyz2+xyx2.

Group like terms:

Δ=x2+(xz+zy+xy)(y2+z2)

We can rewrite symmetric grouping if desired. But we can also notice a factorization — rearrange as

Δ=(x2+y2+z2)+(xy+yz+zx).

Thus

Δ=(xy+yz+zx)(x2+y2+z2)

(That is the simplest closed form. You may also write Δ=12[(xy)2+(yz)2+(zx)2] — indeed expanding that gives the same value. So Δ0 and equals zero exactly when x=y=z.)


5. If Δ=[aij] is the 3×3 determinant and Aij are cofactors of aij, then which of the following equals Δ?

Options:

  • (A) a11A31+a12A32+a13A33

  • (B) a11A11+a12A21+a13A31

  • (C) a21A11+a22A12+a23A13

  • (D) a11A11+a21A21+a31A31

Solution / reasoning.

Standard properties of cofactors / expansions:

  • Determinant expansion along the first row gives
    Δ=a11A11+a12A12+a13A13

  • Expansion along the first column gives
    Δ=a11A11+a21A21+a31A31

Option (D) exactly matches the expansion along the first column, so it equals Δ.
Options (A), (B), (C) are mixed-index combinations that do not in general equal Δ (they give either other identities or zero). For example, the sum of elements of one row multiplied by cofactors of a different row equals 0.

Therefore the correct choice is

(D)  a11A11+a21A21+a31A31

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.