Exercise4.4, Class 12th, Maths, Chapter 4, NCERT

Exercise 4.4 

Question 1:
Find  adjfor

A=(1234)Solution:
For a 2×matrix

A=(abcd) adjA=(dbca)

So for

A=(1234)

adjA=(4231)

(You can check  A(adjA)=(detA)I

detA=1423=2, and indeed AadjA=(2))

Question 2:
Find adj⁡ 

forA=(112235201)

Below I show the cofactors, the adjoint, and a verification

AadjA=(det⁡ A)I

Minors and cofactors

Compute the  2×2  minors and cofactors

Aij=(1)i+jMij

Cofactor matrix [Aij]=(31261521115)

(Each entry is the cofactor of the corresponding element of

A.)

adj

(adjugate = transpose of cofactor matrix)

adjA=(31111251625)

Determinant and verification

det A=27

Now verify    

AadjA=(detA)I=27I

Multiplying gives

AadjA=(270002700027)=27I,

so the adjoint is correct.

___________________

Verify the identity for both matrices

Show that A(adjA)=(adjA)A=AI

Question 3:

A=(2346)

Solution – Compute the determinant:

A=2(6)3(4)=12+12=0.

Compute the Adj (classical adjoint). For a 2×matrix

(abcd),

adjA=(dbca)

Thus,

adjA=(6342)

Multiply:

A(adjA)=(2346)(6342)=(0000)

Similarly

(adjA)A=(0000)

Since 

A=0, we have

AI=0I=(0000)

Hence,

A(adjA)=(adjA)A=AI,

as required.

Question 4:

A=(112302103)

Solution – Compute the determinant –

A=11

Compute the adjugate (transpose of cofactor matrix). The cofactors lead to

adjA=(0321118013).

Multiply:

A(adjA)=(110001100011)=11I,

and likewise

(adjA)A=11I

Thus for this matrix also

A(adjA)=(adjA)A=AI

Conclusion

Both verifications hold:

  • For

    A=(2346)    A(adjA)=(adjA)A=0=AI
  • For

    A=(112302103)

A(adjA)=(adjA)A=11I.

Question 5:

Find A1 if A=(2243).

Formula for inverse of a 2×2 matrix

A=(abcd)

its inverse (if 

A

is

A1=1adbc(dbca

Compute determinant

A=(2)(3)(2)(4)=6+8=14

Since

A

, the inverse exists.

Apply the formula

A1=114(3242)

Final Answer:

A1=114(3242)

Verification (optional):

AA1=(2243)114(3242)=114(140014)=I

✔ Verified.

 

Question 6:

Find A1 if A=(1532)

Formula for inverse

For any 

2×

matrix

A=(abcd),

if 

A=adbc

, then

A1=1A(dbca)

Compute determinant

A=(1)(2)(5)(3)=2+15=13

A=13

, so the inverse exists.

Apply the formula

A1=113(2531)

Final Answer:

A1=113(2531)

Verification (optional):

AA1=(1532)113(2531)=113(130013)=I

✔ Verified.

Question 7:

Find A1 if A=(123024005)

Observation

is an upper triangular matrix, and for triangular matrices,

A=product of diagonal elements.

Determinant

A=1×2×5=10

Since 

A0Aexists.

Use properties of triangular matrices

For an upper triangular matrix, its inverse is also upper triangular.
We find 

A1=[aij]

 such that 

AA1=I

Let

A1=(abc0de00f)

Then

AA1=(123024005)(abc0de00f)=(ab+2dc+2e+3f02d2e+4f005f)

We want this to equal the identity

I=(100010001)

Compare entries

From the bottom:

f=1    f=15

2d=1    d=12

a=1

Now use off-diagonal equations:

e+4f=0    e=2f=25

b+2d=0    b=2d=1

c+2e+3f=0    c=2e3f

Substitute 

e=2and  f=15:

c=2(25)3(15)=4535=15

Write the inverse

A1=(1115012250015)

Verification (optional):

AA1=(123024005)(1115012250015)=I

✔ Verified.

Question 8:

Find A1 for A=(100330521)

Solution.

is lower triangular, so Ais also lower triangular.
Let

A1=(a00bc0def)

and solve

AA1=I

.Multiply  and A1: From the first row: a=1

.From the second row:

3a+3b=0,3c=1    b=1,  c=13

From the third row:

5a+2bd=0,2ce=0,f=1

Substituting

a=1,  b=1,  c=1

 gives

5(1)+2(1)d=0d=3,213e=0e=23,f=1.

Thus

A1=(10011303231)

(You can verify 

AA1=

by multiplication.)

Question 9:

find A

forA=(213410721)

Determinant

Compute A∣ 

(expand along the first row):

A=2102114071+34172

=2(1)1(4)+3(1)=24+3=3

So

A=3

 (non zero) — inverse exists.

Cofactor / Adjugate

Compute the matrix of cofactors (I show the cofactors 

Cij):

[Cij]=(141523113126)

The adjugate (adj A) is the transpose of this:

adjA=(153423121116)

Inverse

A1=1AadjA=13(153423121116)=(13531432334131132)

Equivalently-

A1=13(153423121116)

Quick check (first-row × first-column)

213+143+3(13)=2+433=1,

so the product gives the identity as expected.

Question 10.

Find A1 for A=(112023324)

Solution:

Compute 

A

. Expanding along the first row,

A=12324(1)0334+20232=1(24(3)(2))+1(04(3)3)+2(0(2)23)=1(86)+1(9)+2(6)=2+912=1

So 

A=1

 (nonzero) and the inverse exists.

Compute cofactors (minors 

Mij

 and cofactors

Cij=(1)i+jMij

M11=2324=2,C11=+2,M12=0334=9,C12=9,M13=0232=6,C13=6,M21=1224=0,C21=0,M22=1234=2,C22=2,M23=1132=1,C23=1,M31=1223=1,C31=1,M32=1203=3,C32=+3,M33=1102=2,C33=+2,

Cofactor matrix

C=[Cij

is

C=(296021132)

Adjugate is transpose of cofactor matrix:

adjA=CT=(201923612)

Inverse:

A1=1AadjA=1adjA=(201923612)

Question 11.

Find A1 for A=(1000cosαsinα0sinαcosα)

Solution:

Write 

A=diag(1,M)

where

M=(cosαsinαsinαcosα)

Compute 

detM

:

detM=(cosα)(cosα)(sinα)(sinα)=(cos2α+sin2α)=1

So 

A=1detM=1, hence 

is invertible.

Now compute M1using the 2×

formula:

M1=1detM(cosαsinαsinαcosα)

=1(cosαsinαsinαcosα)=(cosαsinαsinαcosα)=M

Thus 

M1=M

 Equivalently 

M2=I2

Therefore

A1=diag(1,M1)=diag(1,M)=A

Final answer

A1=(1000cosαsinα0sinαcosα)=A

(Verification:

A2=diag(1,M2)=diag(1,I2)=I3, so indeed 

A1=A

Question 12:

Let A=(3725) and B=(6879).

Verify that (AB)1=B1A1.

Let’s verify 

(AB)1=B1A1

Compute

A

and 

B1

(a)  A1 A=3(5)7(2)=1514=1

A1=(5723)

(b)  B1 B=6(9)8(7)=5456=2

B1=12(9876)=(924723)

Compute

AB AB=(3725)(6879)=(36+7738+7926+5728+59)=(67874761)

Compute

(AB)1 AB=67(61)87(47)=40874089=2

(AB)1=12(61874767)=(612872472672)

Compute

B1A1 B1A1=(924723)(5723)

Multiply:

B1A1=((92)(5)+4(2)(92)(7)+4(3)(72)(5)+(3)(2)(72)(7)+(3)(3))=(612872472672)

Compare

(AB)1=(612872472672)=B1A1

Hence verified:

(AB)1=B1A1

Question 13 :

If A=[3112], show that A25A+7I=O. Hence, find A1.

Solution:

Let’s solve step-by-step carefully and clearly.

Given:

A=[3112]

We have to show that

A25A+7I=O

and then use this result to find A1

Step 1: Compute A2

A2=AA=[3112][3112]

Multiply carefully:

A2=[(3)(3)+(1)(1)(3)(1)+(1)(2)(1)(3)+(2)(1)(1)(1)+(2)(2)]=[913+2321+4]=[8553]

So,

A2=[8553]

Step 2: Compute 5A and 7I

5A=5[3112]=[155510]
7I=7[1001]=[7007]

Step 3: Compute A25A+7I

A25A+7I=[8553][155510]+[7007]

First subtract A25A:

[815555(5)310]=[7007]

Now add 7I:

[7007]+[7007]=[0000]

Hence proved:

A25A+7I=O

Step 4: Finding A1

From the equation:

A25A+7I=0

Rearrange it as:

A25A=7IMultiply both sides by A1(on the right):

A5I=7A1

So,A1=17(5IA)

Step 5: Substitute values

A1=17(5[1001][3112])
A1=17[53010(1)52]=17[2113]

Click Here For Question 14 to 18 of Exercise 4.4

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.