Exercise-4.5, Class 12th, Maths, Chapter 4, NCERT

Examine the consistency of the system of equations in Exercises 1 to 6.

1.
{x+2y=22x+3y=3

Solution. From the first, x=22y. Substitute: 2(22y)+3y=34y=3y=1. Then x=0.
Unique solution: (x,y)=(0,1)


2.
{2xy=5x+y=4

Solution. From second y=4x. Substitute: 2x(4x)=53x=9x=3. Then y=1
Solution: (3,1)


3.
{x+3y=52x+6y=8

Solution. The second equation is 2(x+3y)=10, but RHS is 8, not 10. The two equations are inconsistent (parallel, no solution).
No solution. 


4.
{x+y+z=12x+3y+2z=2ax+ay+2az=4

Solution. From (1) & (2): subtract 2(1) from (2) → y=0. Then x+z=1.
Third equation is a(x+y+2z)=4. With y=0 this becomes a(x+2z)=4. Using x=1z:

a((1z)+2z)=a(1+z)=41+z=4a(if a0).

So for a0: z=4a1,  x=24a,  y=0 (unique solution).
If a=0: third eqn becomes 0=4 impossible → inconsistent.

So: consistent (unique) for a0 with (x,y,z)=(24a,0,4a1). Inconsistent when a=0.  depending on a.


5.
{3xy2z=22yz=13x5y=3

Solution. From second: z=2y+1. From third: x=(3+5y)/3. Substitute into first:

33+5y3y2(2y+1)=2(3+5y)y4y2=21=2,

contradiction. So inconsistent (no solution)


6.
{5xy+4z=52x+3y+5z=25x2y+6z=1

Solution. Subtract (1) from (3): y+2z=6y2z=6. Put in (2):

2x+3(6+2z)+5z=22x+18+11z=2x=8112z

Put x,y into (1): solving gives z=2, then y=2, x=3
Unique solution: (x,y,z) = (3,2,-2)

Solve system of linear equations, using matrix method, in Exercises 7 to 14.

Question 7 

Solve by matrix method:

{5x+2y=4,7x+3y=5.

Matrix form: Ax=b with

A=[5273],x=[xy],b=[45]

detA=5372=1514=1
A1=[3275] (since 1/detA=1).
Hence x=A1b=[3275][45]=[23]

Answer: x=2,  y=3.


Question 8 

{2xy=2,3x+4y=3.

Matrix form: A=[2134], b=[23]
detA=243(1)=8+3=11

A1=111[4132]
x=A1b=111[4132][23]=[5111211]

Answer: x=511,  y=1211.


Question 9 

{4x3y=3,3x5y=7.

Matrix form: A=[4335], b=[37]
detA=4(5)3(3)=20+9=11

A1=111[5334]=111[5334]x=A1b=111[5334][37]=[6111911]

Answer: x=611,  y=1911.


Question 10 

{5x+2y=3,3x+2y=5.

Matrix form: A=[5232], b=[35]
Subtract second from first: 2x=2x=1Then 5(1)+2y=35+2y=32y=8y=4.

(Or use inverse: detA=5232=106=4, A1=14[2235] giving same result.)

Answer: x=1,  y=4.


Question 11 

Solve the system

{2x+y+z=1,x2yz=32,2x+y3z=0.

Solution (matrix / elimination).

Augmented matrix:

[2111121322130]

To avoid fractions, multiply row2 by 2 first:

R22R2:[211124232130]

Now eliminate using R1:

  • R2R2R1
    [0,5,32]

  • R3R3R1
    [0,0,41]

Matrix becomes

[211105320041]

Back-substitution:

From row3: 4z=1z=14

Row2: 5y3z=25y314=25y=114y=1120

Row1: 2x+y+z=12x+(1120)+14=1
Compute y+z=1120+520=620=310
So 2x310=12x=1310x=1320

Answer: x=1320,  y=1120,  z=14


Question 12 

Solve the system

{xy+z=4,2x+y3z=0,3y5z=9.

Solution (matrix / substitution).

From the third equation:

3y5z=9y=9+5z3

Substitute y into the first equation:

x9+5z3+z=4

Multiply by 3:

3x(9+5z)+3z=12    3x92z=12    3x2z=21.

Sox=7+23z.(*)

Now substitute x and y into the second equation 2x+y3z=0

2(7+23z)+9+5z33z=0.

Compute left side:

14+43z+9+5z33z=14+4z+9+5z33z

=14+9+9z33z=14+3+3z3z=17.

That gives 17=0, a contradiction.

Conclusion: The system is inconsistent; no solution.

Answer: No solution (inconsistent system).


Question 13 

Solve the system

{2x+3y+3z=5,x2y+z=4,3xy2z=3.

Solution (matrix / elimination).

Augmented matrix:

[233512143123]

Use row2 as pivot to eliminate others:

  • R1R12R2
    [0,  7,  113]

  • R3R33R2
    [0,  5,  515]

So we have

[12140711305515]

(reordered so row2 is the original R2).

Eliminate y from row3 using row2:

  • R37R35R2

7R3=[0,35,35105],  5R2=[0,35,565]

So R3[0,0,4040] ⇒ 40z=40z=1

Back-substitute:

Row2: 7y+z=137y1=137y=14y=2

Row1 (original row2): x2y+z=4x41=4x=1

Answer: x=1,  y=2,  z=1


Question 14 (Plain text)

Solve the system

{xy+2z=7,3x+4y5z=5,2xy+3z=12.

Solution (matrix / elimination).

Augmented matrix:

[1127345521312]

Eliminate below first pivot R1:

  • R2R23R1:  [0,  7,  1126]

  • R3R32R1:  [0,  1,  12]

Swap R2 and R3 to use the simpler pivot:

[11270112071126]

Eliminate y from row3:

  • R3R37R2:  [0,  0,  412]

So 4z=12z=3

Back-substitute:

Row2: yz=2y3=2y=1

Row1: xy+2z=7x1+6=7x=2

Answer: x=2,  y=1,  z=3

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.