Exercise-6.3, Class 12th, Maths, Chapter 6, NCERT

Maxima and Minima

Question 1.

Find the maximum and minimum values, if any, of the following functions:

(i) f(x)=(2x1)2+3
(ii) f(x)=9x2+12x+2
(iii) f(x)=(x1)2+10
(iv) g(x)=x3+1

Solutions

(i) f(x)=(2x1)2+3

f(x)=(2x1)2+3

This is a quadratic in the form a(xh)2+k where a=4>0, hence it opens upwards, so it has a minimum.

Minimum occurs when the squared term is zero:

(2x1)2=0x=12

f(12)=3

Minimum value = 3 at x=12
No maximum


(ii) f(x)=9x2+12x+2

f(x)=9x2+12x+2

Use x=b2a

x=1229=23

Now substitute:

f(23)=9(49)+12(23)+2=48+2=2

Minimum value = –2 at x=23
No maximum


(iii) f(x)=(x1)2+10

This is a downward opening parabola (a=1<0), so it has a maximum.

Maximum occurs when squared term is zero:

x1=0x=1

f(1)=10

Maximum value = 10 at x=1
No minimum


(iv) g(x)=x3+1

Find derivative:

g(x)=3x2

g(x)=0x=0

Second derivative:

g(x)=6x,g(0)=0

This is a point of inflection, not a maximum/minimum.

So:

No maximum or minimum values (cubic increases from  to +).


Question 2.

Find the maximum and minimum values, if any, of the following functions:

(i) f(x)=x+21
(ii) g(x)=x+1+3
(iii) h(x)=sin(2x)+5
(iv) f(x)=sin4x+3
(v) h(x)=x+1,  x(1,1)


Solutions

(i) f(x)=x+21

The function x+2has a minimum value 0 at x=2.

So,

f(2)=01=1

Minimum value = –1 at x=2
No maximum (because x+2f(x))


(ii) g(x)=x+1+3

x+1 has minimum value 0 at x=1.
So,

g(1)=(0)+3=3

Maximum value = 3 at x=1
No minimum (since x+1)


(iii) h(x)=sin(2x)+5

We know that:

1sin(2x)1

Add 5 to each part:

4sin(2x)+56

Thus:

Minimum value = 4
Maximum value = 6


(iv) f(x)=sin4x+3

1sin4x1

Add 3:

2sin4x+34

Since absolute value is applied:

sin4x+3=sin4x+3(always positive already)

Therefore:

Minimum value = 2
Maximum value = 4


(v) h(x)=x+1,  x(1,1)

This is a linear function.

Evaluate at interval boundaries:

Left end: x1,

h(x)(1+1)=0(not included)

Right end: x1,

h(x)(1+1)=2(not included)

Since interval is open, values 0 and 2 are not attained.

No maximum and no minimum
(Values approach 0 and 2 but never reach them)


Question 3.

Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

(i) f(x)=x2
(ii) g(x)=x33x
(iii) h(x)=sinx+cosx,  0<x<π2
(iv) f(x)=sinxcosx,  0<x<2π
(v) f(x)=x36x2+9x+15
(vi) g(x)=x2+2x,  x>0
(vii) g(x)=1x2+2
(viii) f(x)=x1x,  0<x<1


Solutions

(i) f(x)=x2

f(x)=2x=0x=0

f(x)=2>0

So local minimum at x=0

f(0)=0

Local minimum value = 0 at x=0
No local maximum.


(ii) g(x)=x33x

g(x)=3x23=3(x21)=0x=±1

g(x)=6x

At x=1,   g(1)=6<0 → local maximum

g(1)=(1)33(1)=2

At x=1, g(1)=6>0 → local minimum

g(1)=13=2

Local maximum value = 2 at x=1
Local minimum value = –2 at x=1


(iii) h(x)=sinx+cosx,  0<x<π2

h(x)=cosxsinx=0cosx=sinxx=π4

h(x)=sinxcosx

At x=π4,

h(π4)=2<0

So local maximum.h(π4)=22+22=2

Local maximum value = 2 at x=π4
No local minimum in given interval.


(iv) f(x)=sinxcosx,  0<x<2π

f(x)=cosx+sinx=0tanx=1

Solutions in interval:

x=3π4,  7π4

f(x)=sinx+cosx

At x=3π4,

f<0local maximum

f(3π4)=22(22)=2

At x=7π4,

f>0local minimum
f(7π4)=2222=2

Local maximum = 2 at x=3π4
Local minimum = 2 at x=7π4


(v) f(x)=x36x2+9x+15

f(x)=3x212x+9=3(x24x+3)=3(x1)(x3)=0x=1,  3

f(x)=6x12

At x=1, f(1)=6<0 → local maximum

f(1)=16+9+15=19

At x=3, f(3)=6>0 → local minimum

f(3)=2754+27+15=15

Local maximum value = 19 at x=1
Local minimum value = 15 at x=3


(vi) g(x)=x2+2x,  x>0

g(x)=122x2=02x2=12x=2

g(x)=4x3g(2)=48>0

So local minimum at x=2

g(2)=1+1=2

Local minimum value = 2 at x=2
No local maximum.


(vii) g(x)=1x2+2

g(x)=2x(x2+2)2=0x=0

g(x)=6x24(x2+2)3g(0)=48<0

So local maximum at x=0g(0)=12

Local maximum value = 12 at x=0
No minimum.


(viii) f(x)=x1x,  0<x<1

f(x)=1x+x(121x)=2(1x)x21x

Set numerator zero:

22xx=023x=0x=23
f(23)=23123=2313=233

f(23)<0local maximum

Local maximum value = 233 at x=23
No minimum in interval.


Question 4.

Prove the following functions do not have maxima or minima:

(i) f(x)=ex
(ii) g(x)=logx
(iii) h(x)=x3+x2+x+1


Solutions

(i) f(x)=ex

f(x)=ex

Differentiate:

f(x)=ex>0for all real x

Since derivative is always positive, function is strictly increasing on (,).

Therefore, it never turns back to form a peak (maximum) or valley (minimum).

Hence, ex has no maximum and no minimum.


(ii) g(x)=logx, x>0

g(x)=1x>0for all x>0

Derivative is always positive in its domain, so logx is strictly increasing.

Therefore, logx has no maxima or minima.


(iii) h(x)=x3+x2+x+1

h(x)=x3+x2+x+1

Differentiate:h(x)=3x2+2x+1

Check discriminant of the quadratic:

Δ=(2)24(3)(1)=412=8<0

Since discriminant < 0 → quadratic has no real roots, and the coefficient of x2 is positive,

3x2+2x+1>0 for all x

Thus derivative is always positive, so the function is strictly increasing.

Therefore, h(x) has no maxima or minima.


Question 5.

Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

(i) f(x)=x3,  x[2,2]
(ii) f(x)=sinx+cosx,  x[0,π]
(iii) f(x)=4x12x2,  x[2,92]
(iv) f(x)=(x1)2+3,  x[3,1]


Solutions

(i) f(x)=x3, x[2,2]

Derivative:

f(x)=3x2=0x=0

Check values at critical point and endpoints:

f(2)=(2)3=8

f(0)=0

f(2)=8

Answer:

  • Absolute maximum = 8 at x=2

  • Absolute minimum = –8 at x=2


(ii) f(x)=sinx+cosx,  x[0,π]

Derivative:

f(x)=cosxsinx=0sinx=cosxx=π4

Evaluate:

f(π4)=22+22=2

Check endpoints:

f(0)=sin0+cos0=1

f(π)=sinπ+cosπ=1

Answer:

  • Absolute maximum = 2 at x=π4

  • Absolute minimum = –1 at x=π


(iii) f(x)=4x12x2,  x[2,92]

Derivative:

f(x)=4x=0x=4

Evaluate at critical point and endpoints:

f(2)=4(2)12(4)=82=10

f(4)=4(4)12(16)=168=8

f(92)=49212(814)=18818=1810.125=7.875

Answer:

  • Absolute maximum = 8 at x=4

  • Absolute minimum = –10 at x=2


(iv) f(x)=(x1)2+3,  x[3,1]

Derivative:

f(x)=2(x1)=0x=1

Check endpoints and critical point:

f(3)=(31)2+3=16+3=19

f(1)=(11)2+3=3

Answer:

  • Absolute minimum = 3 at x=1

  • Absolute maximum = 19 at x=3


Question 6.

Find the maximum profit that a company can make, if the profit function is given by:

p(x)=4172x18x2


Solution

Given:

p(x)=4172x18x2This is a quadratic function of the form:

p(x)=ax2+bx+c

where a=18<0, so the parabola opens downwardsmaximum exists.

To find the value of x at which maximum profit occurs:

x=b2a

Here a=18, b=72

x=722(18)=7236=2

Now substitute x=2 into profit function:

p(2)=4172(2)18(2)2

=41+14418(4)

=41+14472=113

Final Answer

Maximum profit = ₹ 113
Occurs when x=2


Question 7.

Find both the maximum value and the minimum value of

f(x)=3x48x3+12x248x+25

on the interval [0,3].


Solution

Step 1: Differentiate

f(x)=3x48x3+12x248x+25
f(x)=12x324x2+24x48

Factor:f(x)=12(x32x2+2x4)

Group:

x32x2+2x4=x2(x2)+2(x2)=(x2+2)(x2)

So:

f(x)=12(x2+2)(x2)

Step 2: Critical points

f(x)=0(x2+2)(x2)=0

Since x2+2>0 always, only solution is:

x=2

Step 3: Evaluate function at

  • Endpoints x=0,3

  • Critical point x=2

At x=0

f(0)=25

At x=2

f(2)=3(16)8(8)+12(4)48(2)+25

=4864+4896+25=39

At x=3

f(3)=3(81)8(27)+12(9)48(3)+25

=243216+108144+25=16


Question 8.

At what points in the interval [0,2π], does the function sin2x attain its maximum value?


Solution

We know that the maximum value of the sine function is 1.

So we need the values of x for which:

sin2x=1

This happens when:

2x=π2+2πn,where n is any integer

Divide both sides by 2:

x=π4+πn

Now find values in the interval [0,2π]:

For n=0:

x=π4

For n=1:

x=π4+π=π4+4π4=5π4

For n=2:

x=π4+2π>2πnot in interval

Final Answer

The function sin2x attains its maximum value at x=π4,  5π4


Question 9.

What is the maximum value of the function sinx+cosx?


Solution

We want to find the maximum value of:

f(x)=sinx+cosx

Use the identity:

sinx+cosx=2(12sinx+12cosx)

Since

12=sinπ4=cosπ4

sinx+cosx=2(sinxsinπ4+cosxcosπ4)

=2cos(xπ4)

We know:1cos(xπ4)1

Multiply by 2:

2sinx+cosx2

Thus, the maximum value is:

2


Question 10.

Find the maximum value of

f(x)=2x324x+107

in the interval [1,3].
Find the maximum value of the same function in [3,1].


Solution

Given:

f(x)=2x324x+107

Step 1: Differentiate

f(x)=6x224=6(x24)=6(x2)(x+2)

Step 2: Find critical points

f(x)=0(x2)(x+2)=0

So:

x=2,  x=2

Now we will analyze each interval separately.


Part (a): Interval [1,3]

Critical point inside interval = x=2

Evaluate at endpoints and critical point

f(1)=2(1)324(1)+107=224+107=85

f(2)=2(8)24(2)+107=1648+107=75

f(3)=2(27)24(3)+107=5472+107=89


Maximum value in [1,3]

x f(x)
1    85
2    75
3    89

Maximum value is 89 at x=3


Part (b): Interval [3,1]

Critical point inside interval = x=2

Evaluate at endpoints and critical point

f(3)=2(27)24(3)+107=54+72+107=125

f(2)=2(8)24(2)+107=16+48+107=139

f(1)=2(1)24(1)+107=2+24+107=129


Maximum value in [3,1]

x f(x)
-3    125
-2    139
-1    129

Maximum value is 139 at x=2

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.