Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT(1-10)

Question 1

Differentiate w.r.t. x:

y=(3x29x+5)9

Solution

Using the chain rule, differentiate the outer function first and then multiply by the derivative of the inner function:

dydx=9(3x29x+5)8×ddx(3x29x+5)

Now differentiate the bracket:

ddx(3x29x+5)=6x9

So,dydx=9(3x29x+5)8(6x9)

dydx=27(2x3)(3x29x+5)8


Question 2

Differentiate w.r.t. x:

y=sin3x+cos6x

Solution

Differentiate each term separately. Using the chain rule:

ddx(sin3x)=3sin2xddx(sinx)=3sin2xcosx
ddx(cos6x)=6cos5xddx(cosx)=6cos5x(sinx)

So,dydx=3sin2xcosx6cos5xsinx

Now factor common terms: 3sinxcosx

dydx=3sinxcosx(sinx2cos4x)


Question 3

Differentiate w.r.t. x:

y=(5x)3cos2x

Solution

Take log on both sides:

lny=3cos2xln(5x)

Differentiate w.r.t. x (using product rule):

1ydydx=3ln(5x)ddx(cos2x)+3cos2xddx(ln(5x))

=3ln(5x)(2sin2x)+3cos2x1x

=6ln(5x)sin2x+3cos2xx

Multiply both sides by y:

dydx=(5x)3cos2x(3cos2xx6ln(5x)sin2x)


Question 4

Differentiate w.r.t. x:

y=sin1(xx),0x1

Solution

First rewrite the function inside:

xx=x3/2

y=sin1(x3/2)

Now differentiate:

dydx=11(x3/2)2ddx(x3/2)

ddx(x3/2)=32x1/2

So,dydx=32x1/21x3

dydx=3x21x3,0x1


 

Question 5y=cos1(x2)2x+7,2<x<2Answer :

To Find: dydx

Let:y=cos1(x2)(2x+7)1/2

Use Product Rule:

dydx=dudxv+udvdx

Where:u=cos1(x2),v=(2x+7)1/2

Step 1: Differentiate u=cos1(x/2)

dudx=11(x2)2ddx(x2)
dudx=11x2412
dudx=121x24

Now,

1x24=4x22

So,

dudx=124x22=14x2

Step 2: Differentiate v=(2x+7)1/2

dvdx=12(2x+7)3/22
dvdx=(2x+7)3/2

Apply Product Rule

dydx=(14x2)(2x+7)1/2+(cos1(x2))((2x+7)3/2)
dydx=14x22x+7cos1(x/2)(2x+7)3/2


Question 6

y=cot1(1+sinx+1sinx1+sinx1sinx),0<x<π2

Solution

Let

A=1+sinx,B=1sinx

So the expression inside cot1 becomes:

A+BAB

Simplify the expression

Multiply numerator and denominator by (A+B):

A+BABA+BA+B=(A+B)2A2B2Expand numerator:

(A+B)2=A2+2AB+B2And denominator:

A2B2=(1+sinx)(1sinx)=2sinx

Now calculate numerator:

A2+B2=(1+sinx)+(1sinx)=2
AB=(1+sinx)(1sinx)=1sin2x=cosx

So:(A+B)2=2+2cosx

Thus:A+BAB=2+2cosx2sinx=1+cosxsinx

Use Trigonometric Identity

1+cosxsinx=cotx2

So:y=cot1(cotx2)

Given domain 0<x<π2, we have:

0<x2<π4

In this domain, cot1(cotθ)=θ
Thus:y=x2

Differentiate

dydx=12


Question 7

y=(logx)logx,x>1

We need to find:

dydxSolution

Take logarithm on both sides

y=(logx)logx
lny=logxln(logx)

Differentiate both sides w.r.t. x

Use implicit differentiation:

Left side:

1ydydx

Right side — Product rule:

ddx[logxln(logx)]

Let u=logx and v=ln(logx)

u=1x,v=1logx1x

Apply product rule:

ddx[uv]=uv+uv
=1xln(logx)+logx1xlogx

=ln(logx)x+1x

Equate both sides

1ydydx=ln(logx)x+1x

Multiply both sides by y:

dydx=y(ln(logx)x+1x)

Substitute y=(logx)logx

dydx=(logx)logx(ln(logx)x+1x)

Final Answer

dydx=(logx)logx(ln(logx)x+1x)


Question 8

y=cos(acosx+bsinx)

where a and b are constants.

We have to find:

dydxSolution

Let:

u=acosx+bsinx

So the function becomes:

y=cosu

Differentiate using Chain Rule

dydx=sinududx

Now differentiate u:

dudx=addx(cosx)+bddx(sinx)

dudx=a(sinx)+b(cosx)

dudx=asinx+bcosx

Substitute back into derivative

dydx=sin(acosx+bsinx)(asinx+bcosx)

Final Answer

dydx=sin(acosx+bsinx)(asinxbcosx)


Question 9

y=(sinxcosx)(sinxcosx),π4<x<3π4

We must find:

dydx

Solution

Let:

y=(sinxcosx)(sinxcosx)

Take natural log on both sides (logarithmic differentiation):

lny=(sinxcosx)ln(sinxcosx)

Differentiate both sides w.r.t x:

Left side:

1ydydx

Right side (product rule):

Let u=sinxcosx and v=ln(sinxcosx)

u=cosx+sinx
v=1sinxcosx(cosx+sinx)

Apply product rule:

ddx[uv]=uv+uv

=(cosx+sinx)ln(sinxcosx)+(sinxcosx)cosx+sinxsinxcosx

Simplify the second term:

=(cosx+sinx)ln(sinxcosx)+(cosx+sinx)

Factor out (cosx+sinx)

=(cosx+sinx)[ln(sinxcosx)+1]

Now equate both sides

1ydydx=(cosx+sinx)[ln(sinxcosx)+1]

Multiply both sides by y:

dydx=y(cosx+sinx)[ln(sinxcosx)+1]

Substitute y=(sinxcosx)(sinxcosx)

dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]

Final Answer

dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]


Question 10

y=xx+xa+ax+aa,a>0,  x>0

We need to find:

dydx

Differentiate term by term

1. xx

Use logarithmic differentiation:

ddx(xx)=xx(lnx+1)

       2. xa

Here a is constant:

ddx(xa)=axa1

        3. ax

Exponential with constant base:

ddx(ax)=axlna

        4. aa

Constant term:

ddx(aa)=0

Combine all results

dydx=xx(lnx+1)+axa1+axlna+0

Final Answer

dydx=xx(lnx+1)+axa1+axlna

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.