Exercise-5.4, Class 12th, Maths, Chapter 5, NCERT

Differentiate the following w.r.t. x:

Question 1

Differentiate:

y=exsinxSolution

This is a quotient, so use the Quotient Rule:

ddx(uv)=vuuvv2

Let:

u=ex,v=sinx

Then:

u=ex,v=cosx

Apply the rule:

dydx=sinxexexcosx(sinx)2

Factor out ex:

dydx=ex(sinxcosx)sin2xFinal Answer

dydx=ex(sinxcosx)sin2x


Question 2

Differentiate w.r.t. x:

y=esin1xSolution

Let:

y=esin1x

Use the chain rule:

dydx=esin1xddx(sin1x)

We know:

ddx(sin1x)=11x2

Therefore:

dydx=esin1x11x2Final Answer

dydx=esin1x1x2


Question 3

Differentiate:

y=ex3Solution

Use the chain rule:

Let:

y=eu,u=x3

Then:

dydu=eu,dudx=3x2

Apply chain rule:

dydx=eu3x2

Substitute u=x3:

dydx=3x2ex3Final Answer

dydx=3x2ex3


Question 4

Differentiate with respect to x:

y=sin(tan1(ex))Solution

Let:

u=tan1(ex)

So:

y=sin(u)

Step 1: Differentiate outer function

dydu=cosu

Step 2: Differentiate inner function

u=tan1(ex)

Derivative of tan1t is 11+t2t

So,

dudx=11+(ex)2ddx(ex)

dudx=11+e2x(ex)

Step 3: Apply chain rule

dydx=cos(u)dudx

dydx=cos(tan1(ex))(ex1+e2x)

We know the identity:

cos(tan1t)=11+t2

So:

cos(tan1(ex))=11+e2x

Final Simplified Answer

dydx=ex(1+e2x)3/2Final Answer

dydx=ex(1+e2x)3/2


Question 5

Differentiate w.r.t. x:

y=log(cos(ex))Solution

Use the chain rule multiple times.

Let:

y=log(cos(ex))

Step 1: Differentiate outer logarithm

dydx=1cos(ex)ddx(cos(ex))

Step 2: Differentiate cos(ex)

ddx(cos(ex))=sin(ex)ddx(ex)
=sin(ex)ex

Combine the results

dydx=1cos(ex)(exsin(ex))
dydx=exsin(ex)cos(ex)Final Answer

dydx=extan(ex)


Question 6

Differentiate w.r.t. x:

y=ex+ex2+ex3+ex4+ex5

Solution

Differentiate term-by-term:

    1. ddx(ex)=ex

   2. ddx(ex2)=ex2ddx(x2)=ex22x

   3. ddx(ex3)=ex3ddx(x3)=ex33x2

   4. ddx(ex4)=ex4ddx(x4)=ex44x3

   5. ddx(ex5)=ex5ddx(x5)=ex55x4

Final Answer

dydx=ex+2xex2+3x2ex3+4x3ex4+5x4ex5


Question 7

Differentiate w.r.t. x:

y=ex,x>0Solution

Rewrite the function:

y=(ex)1/2=e12x

Let:u=12x=12x1/2

So:

y=eu

Differentiate

dydu=eu
dudx=1212x1/2=14x

Apply chain rule:

dydx=eududx

dydx=e12x14xFinal Answer

dydx=e12x4x,x>0


Question 8

Differentiate w.r.t. x:

y=log(logx),x>1Solution

This is a composition of two logarithmic functions, so apply the chain rule.

Let:

u=logx
y=logu

Differentiate step-by-step

dydu=1u
dudx=1x

Apply chain rule

dydx=dydududx
dydx=1logx1xFinal Answer

dydx=1xlogx,x>1


Question 9

Differentiate w.r.t. x:

y=cosxlogx,x>0Solution

This is a quotient, so apply the Quotient Rule:

ddx(uv)=vuuvv2Let:

u=cosx,v=logxThen:

u=sinx

v=1x

Apply quotient rule

dydx=(logx)(sinx)(cosx)(1x)(logx)2
dydx=sinxlogxcosxx(logx)2Final Answer

dydx=sinxlogxcosxx(logx)2,x>0


Question 10

Differentiate w.r.t. x:

y=cos(logx+ex),x>0Solution

Use the chain rule.

Let:

u=logx+exSo:

y=cos(u)

Differentiate outer function

dydu=sin(u)

Differentiate inner function

dudx=ddx(logx)+ddx(ex)=1x+ex

Apply chain rule

dydx=sin(u)(1x+ex)

Substitute back u=logx+ex:

Final Answer

dydx=sin(logx+ex)(1x+ex),x>0

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.