Tag: Best NCERT Class 12th Solutions Maths

  • Exercise-5.3, Class 12th, Maths, Chapter 5, NCERT

    Find ddin the following:

    Question 1

    Differentiate:

    2x+3y=sinx

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(sinx)

    2+3dydx=cosx

    Now solve for dydx:

    3dydx=cosx2

    dydx=cosx23


    Question 2

    Differentiate:

    2x+3y=siny

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(siny)
    2+3dydx=cosydydx

    (using chain rule on siny)

    Now collect dydx terms on one side:

    3dydxcosydydx=2

    Factor out dydx:

    dydx(3cosy)=2

    So,

    dydx=23cosy


    Question 3

    Find dydx if:

    ax+by2=cosy

    Solution

    Differentiate both sides with respect to x:

    ddx(ax)+ddx(by2)=ddx(cosy)

    Differentiate term by term

    a+b2ydydx=sinydydx

    (using chain rule on cos y)

    So,

    a+2bydydx=sinydydx

    Move all dydx terms to one side:

    2bydydx+sinydydx=a

    Factor out dydx:

    dydx(2by+siny)=a

    Final Answer

    dydx=a2by+siny


    Question 4

    Find dydx if:

    xy+y2=tanx+y

    Solution

    Differentiate both sides w.r.t. x:

    ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

    Differentiate term by term

    1. ddx(xy)=xdydx+y
      (product rule)

    2. ddx(y2)=2ydydx

    3. ddx(tanx)=sec2x

    4. ddx(y)=dydx


    Substitute all derivatives

    xdydx+y+2ydydx=sec2x+dydx

    Collect dydx terms on one side:

    xdydx+2ydydxdydx=sec2xy

    Factor out dydx:

    dydx(x+2y1)=sec2xy

    Final Answer

    dydx=sec2xyx+2y1


    Find ddin the following:

    Question 1

    Differentiate:

    2x+3y=sinx

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(sinx)

    2+3dydx=cosx

    Now solve for dydx:

    3dydx=cosx2

    dydx=cosx23


    Question 2

    Differentiate:

    2x+3y=siny

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(siny)
    2+3dydx=cosydydx

    (using chain rule on siny)

    Now collect dydx terms on one side:

    3dydxcosydydx=2

    Factor out dydx:

    dydx(3cosy)=2

    So,

    dydx=23cosy


    Question 3

    Find dydx if:

    ax+by2=cosy

    Solution

    Differentiate both sides with respect to x:

    ddx(ax)+ddx(by2)=ddx(cosy)

    Differentiate term by term

    a+b2ydydx=sinydydx

    (using chain rule on cos y)

    So,

    a+2bydydx=sinydydx

    Move all dydx terms to one side:

    2bydydx+sinydydx=a

    Factor out dydx:

    dydx(2by+siny)=a

    Final Answer

    dydx=a2by+siny


    Question 4

    Find dydx if:

    xy+y2=tanx+y

    Solution

    Differentiate both sides w.r.t. x:

    ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

    Differentiate term by term

    1. ddx(xy)=xdydx+y
      (product rule)

    2. ddx(y2)=2ydydx

    3. ddx(tanx)=sec2x

    4. ddx(y)=dydx


    Substitute all derivatives

    xdydx+y+2ydydx=sec2x+dydx

    Collect dydx terms on one side:

    xdydx+2ydydxdydx=sec2xy

    Factor out dydx:

    dydx(x+2y1)=sec2xy

    Final Answer

    dydx=sec2xyx+2y1


    Question 5

    Find dydx if:

    x2+xy+y2=100

    Solution

    Differentiate both sides with respect to x:

    ddx(x2)+ddx(xy)+ddx(y2)=ddx(100)

    Now apply differentiation rules:

    Term-by-term differentiation

    1. ddx(x2)=2x

    2. ddx(xy)=xdydx+y

    3. (product rule)

    4. ddx(y2)=2ydydx

    5. ddx(100)=0

    Substitute into the equation

    2x+(xdydx+y)+2ydydx=0

    Group dydx terms:

    xdydx+2ydydx=2xy

    Factor out dydx:

    dydx(x+2y)=2xy

    Final Answer

    dydx=2xyx+2y


    Question 6

    Find dydx if:

    x3+x2y+xy2+y3=81

    Solution

    Differentiate both sides with respect to x:

    ddx(x3)+ddx(x2y)+ddx(xy2)+ddx(y3)=ddx(81)

    Differentiate term-by-term

    1. ddx(x3)=3x2

    2. ddx(x2y)=2xy+x2dydx
      (product rule)

    3. ddx(xy2)=y2+2xydydx
      (product rule)

    4. ddx(y3)=3y2dydx
      (chain rule)

    5. ddx(81)=0

    Substitute everything back

    3x2+2xy+x2dydx+y2+2xydydx+3y2dydx=0

    Group the terms containing dydx:

    x2dydx+2xydydx+3y2dydx=3x22xyy2

    Factor out dydx:

    dydx(x2+2xy+3y2)=(3x2+2xy+y2)

    Final Answer

    dydx=3x2+2xy+y2x2+2xy+3y2


    Question 7

    Find dydx if:

    sin2y+cosxy=kSolution

    Differentiate both sides with respect to x:

    ddx(sin2y)+ddx(cosxy)=ddx(k)

    Differentiate term by term

          1. sin2y

    Let u=siny, so expression = u2

    ddx(sin2y)=2sinycosydydx

    (because ddx(siny)=cosydydx

    So:2sinycosydydx

         2. cos(xy)

    Apply chain rule and product rule inside:

    Derivative of cosA is sinA:

    ddx(cos(xy))=sin(xy)ddx(xy)

    Now:

    ddx(xy)=xdydx+y

    (using product rule)

    So:

    ddx(cos(xy))=sin(xy)(xdydx+y)

    Right-hand side

    ddx(k)=0

    Combine all results

    2sinycosydydxsin(xy)(xdydx+y)=0

    Expand:

    2sinycosydydxxsin(xy)dydxysin(xy)=0

    Group the terms with dydx:

    dydx(2sinycosyxsin(xy))=ysin(xy)

    Final Answer

    dydx=ysin(xy)2sinycosyxsin(xy)


    Question 8

    Find dydx if:

    sin2x+cos2y=1

    Solution

    Differentiate both sides with respect to x:

    ddx(sin2x)+ddx(cos2y)=ddx(1)

    Differentiate term by term

    1. sin2x

    Let u=sinx, then u2=sin2x

    ddx(sin2x)=2sinxcosx

        2. cos2y

    Let v=cosy, so v2=cos2y

    ddx(cos2y)=2cosy(siny)dydx

    (using chain rule: derivative of cosy is sinydydx)

    So:

    ddx(cos2y)=2cosysinydydx

    Right-hand side

    ddx(1)=0

    Put everything together

    2sinxcosx2cosysinydydx=0

    Move the second term to the other side:

    2sinxcosx=2cosysinydydx

    Divide both sides by 2cosysiny:

    dydx=sinxcosxcosysiny

    Final Answer

    dydx=sinxcosxsinycosy


    Question 9

    Find dydx if:

    y=sin1(2x1+x2)

    Solution

    Let:y=sin1(2x1+x2)

    We know the identity:

    sin(2θ)=2tanθ1+tan2θComparing:

    2x1+x2=sin(2θ)if x=tanθSo let:x=tanθθ=tan1x

    Then:y=sin1(sin(2θ))=2θ=2tan1x

    Now differentiate:

    y=2tan1x

    dydx=211+x2

    21+x2


    Question 10

    Find dydx if:

    y=tan1(3xx313x2),13<x<13

    Solution

    We use the trigonometric identity:

    tan(3θ)=3tanθtan3θ13tan2θ

    Compare with the given expression:

    3xx313x2=tan(3θ)if x=tanθ

    So let:

    x=tanθθ=tan1x

    Then:y=tan1(tan(3θ))=3θ=3tan1x

    The given interval:13<x<13ensures:

    x<13θ<π63θ<π2

    Thus, tan1(tan(3θ))=3θ is valid (i.e., no ambiguity or discontinuity).

    Differentiate

    y=3tan1x
    dydx=311+x2Final Answer

    dydx=31+x2,13<x<13


    Question 11

    Find dydx if:

    y=cos1(1x21+x2),0<x<1Solution

    Let:

    y=cos1(1x21+x2)

    We use a trigonometric substitution.

    Let:

    x=tanθθ=tan1x

    Compute the inside expression:

    1x21+x2=1tan2θ1+tan2θ

    We know the identity:

    cos(2θ)=1tan2θ1+tan2θ

    Thus:

    1x21+x2=cos(2θ)

    So:y=cos1(cos(2θ))=2θ

    Since 0<x<10<θ<π4, thus 0<2θ<π2, ensuring the inverse cosine gives principal value.

    Therefore:

    y=2θ=2tan1x

    Differentiate

    dydx=211+x2

    Final Answer

    dydx=21+x2,0<x<1


    Question 12

    Find dydx if:

    y=sin1(1x21+x2),0<x<1Solution

    Let:

    y=sin1(1x21+x2)

    We use trigonometric substitution similar to the previous problem.

    Let:

    x=tanθθ=tan1x

    Then:

    1x21+x2=1tan2θ1+tan2θ

    Using the identity:

    cos(2θ)=1tan2θ1+tan2θ

    So:y=sin1(cos(2θ))

    We also know:

    cos(2θ)=sin(π22θ)

    Thus:y=sin1(sin(π22θ))=π22θ

    Since 0<x<1, 0<θ<π4, so:

    0<2θ<π2π22θπ2

    Hence the principal value is correct.

    Differentiate

    y=π22θ=π22tan1x

    dydx=211+x2Final Answer

    dydx=21+x2,0<x<1


    Question 13

    y=cos1(2x1+x2),1<x<1

    Now we will solve this correctly.

    Solution

    Let:

    y=cos1(2x1+x2)

    Use substitution:

    x=tanθθ=tan1x

    Then:

    2x1+x2=2tanθ1+tan2θ

    We know the identity:

    sin(2θ)=2tanθ1+tan2θ

    So:

    2x1+x2=sin(2θ)

    Thus:

    y=cos1(sin(2θ))

    We also know:sin(2θ)=cos(π22θ)

    So:y=π22θ=π22tan1x

    Differentiate

    y=π22tan1x

    dydx=211+x2Final Answer

    dydx=21+x2,1<x<1


    Question 14

    Find dydx if:

    y=sin1(2x1x2),12<x<12Solution

    Let:y=sin1(2x1x2)

    We use a substitution to simplify.

    Let:

    x=sinθθ=sin1x

    Then:

    1x2=1sin2θ=cosθ

    So:

    2x1x2=2sinθcosθ=sin(2θ)

    Thus:y=sin1(sin(2θ))=2θ

    The given interval:

    12<x<12

    gives:

    π4<θ<π42θ<π2

    Therefore:y=2θ=2sin1x

    Differentiate

    y=2sin1x

    dydx=211x2Final Answer

    dydx=21x2,12<x<12


    Question 15

    Find dydx if:

    y=sec1(12x21),0<x<12Solution

    Let:

    y=sec1(u),where u=12x21

    We know:

    ddx(sec1u)=1uu21dudx

    Step 1: Differentiate the inside function

    u=12x21=(2x21)1

    dudx=1(2x21)2(4x)=4x(2x21)2

    Step 2: Apply inverse secant derivative formula

    dydx=112x21(12x21)21(4x(2x21)2)

    Since 0<x<12, we have 2x21<0, so:

    12x21=12x21

    Thus:

    dydx=(2x211)11(2x21)2(2x21)2(4x(2x21)2)

    Simplify inner root:

    1(2x21)2=1(4x44x2+1)=4x24x4=4x2(1x2)

    So:

    4x2(1x2)(2x21)2=2x1x22x21

    Since 2x21<0, 2x21=12x2:

    4x2(1x2)(2x21)2=2x1x212x2

    Final Simplification

    dydx=4x(2x21)2(2x21)2x1x212x2
    dydx=4x(2x21)12x1x2

    Cancel x:

    dydx=4(2x21)121x2

    dydx=2(2x21)1x2,0<x<12Final Answer

    dydx=2(2x21)1x2

     

     

  • Exercise-5.2, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the functions with respect to x in Exercises 1 to 8.

    1. Differentiate: sin(x2+5) with respect to x.


    Solution

    We need to differentiate the function:

    y=sin(x2+5)

    This is a composite function, so we will apply the Chain Rule

    Let:

    u=x2+5y=sin(u)

    Differentiate both:

    dydu=cos(u)dudx=2x

    Now apply Chain Rule:

    dydx=dydududx
    dydx=cos(u)2x

    Substitute u=x2+5:

    dydx=2xcos(x2+5)


    Question 2

    Differentiate with respect to x:

    cos(sinx)

    Solution

    Given:

    y=cos(sinx)

    This is a composite function, where:

    u=sinxy=cos(u)

    Now differentiate step-by-step:

    Step 1: Differentiate outer function

    dydu=sin(u)

    Step 2: Differentiate inner function

    dudx=cosx

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))cosx

    Substitute back u=sinx:

    dydx=sin(sinx)cosx


    Question 3

    Differentiate with respect to x:

    sin(ax+b)

    Solution

    Let:

    y=sin(ax+b)

    This is again a composite function, so we apply the Chain Rule.

    Step 1:

    Let the inner function:

    u=ax+b

    Then,

    y=sin(u)

    Step 2: Differentiate

    dydu=cos(u)
    dudx=a

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=cos(u)a

    Substitute u=ax+b:

    dydx=acos(ax+b)


    Question 4

    Differentiate with respect to x:

    ddx[sec(tan(x))

    Solution

    Let:

    u=tan(x)

    y=sec(u)

    Differentiate outer function

    dydu=sec(u)tan(u)

    Differentiate inner function

    u=tan(v),where v=x

    dudv=sec2(v)

    Differentiate 

    v=x
    dvdx=12x

    Apply Chain Rule

    dydx=dydududvdvdx
    dydx=sec(u)tan(u)sec2(v)12x

    Substitute u=tan(x), v=x:

    Final Answer

    ddx[sec(tan(x))]=12x  sec(tan(x))  tan(tan(x))  sec2(x)


    Question 5

    Differentiate with respect to x:

    sin(ax+b)cos(cx+d)Solution

    Let:y=sin(ax+b)cos(cx+d)

    This is a quotient, so we use the Quotient Rule:

    dydx=vdudxudvdxv2

    where

    u=sin(ax+b),v=cos(cx+d)

    Step 1: Differentiate u

    dudx=cos(ax+b)a

    Step 2: Differentiate v

    dvdx=sin(cx+d)c

    Step 3: Apply Quotient Rule

    dydx=cos(cx+d)(acos(ax+b))sin(ax+b)(csin(cx+d))cos2(cx+d)

    Simplify the numerator:

    =acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)

    Final Answer

    ddx(sin(ax+b)cos(cx+d))=acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)


    Question 6

    Differentiate with respect to x:

    cos(x3)sin2(x5)

    Solution

    The given function is a product, so we apply the Product Rule:

    ddx(uv)=uv+uv

    Let:

    u=cos(x3)
    v=sin2(x5)

    Step 1: Differentiate u=cos(x3)

    Using chain rule:

    u=sin(x3)3x2

    u=3x2sin(x3)

    Step 2: Differentiate v=sin2(x5)

    Rewrite:

    v=(sin(x5))2

    Let t=sin(x5), then v=t2

    dvdt=2t=2sin(x5)

    dtdx=cos(x5)5x4

    So,

    v=2sin(x5)5x4cos(x5)
    v=10x4sin(x5)cos(x5)

    Step 3: Apply Product Rule

    dydx=uv+uv

    Substitute:

    dydx=(3x2sin(x3))sin2(x5)+cos(x3)10x4sin(x5)cos(x5)

    Final Answer

    ddx[cos(x3)sin2(x5)]=3x2sin(x3)sin2(x5)+10x4cos(x3)sin(x5)cos(x5)


    Let’s differentiate step by step.


    Question 7

    y=2cot(x2)

    Rewrite using exponent form:

    y=2(cot(x2))1/2Solution

    Let:

    u=cot(x2)
    y=2u1/2

    Step 1: Differentiate outer function

    dydu=212u1/2=u1/2

    Step 2: Differentiate inner function

    u=cot(x2)

    Derivative of cott is csc2t

    So, by chain rule:

    dudx=csc2(x2)2x

    Apply Chain Rule

    dydx=dydududx

    dydx=u1/2(2xcsc2(x2))

    Substitute back u=cot(x2):

    dydx=2xcsc2(x2)(cot(x2))1/2

    Rewrite using square root:

    dydx=2xcsc2(x2)cot(x2)

    Final Answer

    ddx[2cot(x2)]=2xcsc2(x2)cot(x2)


    Question 8

    Differentiate with respect to x:

    cos(x)Solution

    Let:y=cos(x)

    This is a composite function, so we will apply the Chain Rule.

    Step 1: Identify inner and outer functions

    u=x=x1/2
    y=cos(u)

    Step 2: Differentiate each part

    dydu=sin(u)

    dudx=12x

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))12x

    Substitute u=x:

    Final Answer

    ddx[cos(x)]=sin(x)2x


    Question 9

    Prove that the function

    f(x)=x1,  xR

    is not differentiable at x=1.

    Solution

    First, write the function in piecewise form:

    f(x)={1x,if x<1x1,if x>1

    Also,

    f(1)=11=0

    To check differentiability at x=1, evaluate the left-hand derivative and the right-hand derivative.

    Left-hand derivative (LHD) at x=1

    For x<1, f(x)=1x

    ddx(1x)=1So,

    LHD at x=1=limh0f(1+h)f(1)h=1

    Right-hand derivative (RHD) at x=1

    For x>1, f(x)=x1

    ddx(x1)=1

    So,

    RHD at x=1=limh0+f(1+h)f(1)h=1

    Conclusion

    LHD=1,RHD=1

    Since:LHDRHD

      f(x)=x1 is not differentiable at x=1.

    Reason

    The graph of x1 has a sharp corner (cusp) at x=1, which makes the slope undefined there.


    Question 10

    Prove that the greatest integer function defined by

    f(x)=[x],0<x<3

    is not differentiable at x=1 and x=2.

    Solution:

    Understanding the function

    The function [x] defines the greatest integer less than or equal to x.

    For 0<x<3, the function behaves as follows:

    f(x)={0,0<x<11,1<x<22,2<x<3

    Continuity & Differentiability at x=1

    Left-hand limit approaching 1:

    For x<1, f(x)=0

    limx1f(x)=0

    Right-hand limit approaching 1:

    For x>1, f(x)=1

    limx1+f(x)=1

    Since

    limx1f(x)limx1+f(x),
    f(x) is discontinuous at x=1.Differentiability result

    A function must be continuous at a point to be differentiable there.

    Since f(x) is not continuous at x=1, it cannot be differentiable at x=1.

    f(x) is not differentiable at x=1.

    Similarly at x=2

    Left-hand limit approaching 2

    For x<2, f(x)=1

    limx2f(x)=1

    Right-hand limit approaching 2

    For x>2, f(x)=2

    limx2+f(x)=2

    Since

    limx2f(x)limx2+f(x),
    f(x) is discontinuous at x=2.Thus,

    f(x) is not differentiable at x=2.


  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 25

    Examine the continuity of the function

    f(x)={sinxcosx,if x01,if x=0

    Answer

    We are given the function:

    f(x)={sinxcosx,x01,x=0

    We need to examine the continuity at x=0.


    Step 1: Value of the function at x=0

    f(0)=1


    Step 2: Find the limit of f(x)as x0

    limx0(sinxcosx)

    We know standard limits:

    sin0=0,cos0=1

    So,

    limx0(sinxcosx)=01=1

    Step 3: Compare Limit and Function Value

    Expression Value
    limx0f(x) 1
    f(0) 1

    Both values are equal.

    Conclusion

    Since:

    limx0f(x)=f(0)The function f(x) is continuous at x=0.


    Question 26

    Find the value of k so that the function f is continuous at x=π2:

    f(x)={kcosxπ2x,xπ23,x=π2

    Solution

    For continuity at x=π2, we need:

    limxπ2f(x)=f(π2)

    Given:

    f(π2)=3

    Now compute the limit:

    limxπ2kcosxπ2x

    Substitute x=π2:

    kcos(π2)π2(π2)=k(0)0

    This is the indeterminate form 00, so apply L’Hôpital’s Rule.

    Differentiate numerator and denominator:

    limxπ2ksinx2=limxπ2ksinx2

    Now substitute x=π2:

    ksin(π2)2=k(1)2=k2

    For continuity:k2=3
    k=6

    Final Answer

    k=6


    Question 27

    Find the value of k so that the function f is continuous at x=2:

    f(x)={kx2,x23,x>2

    Solution

    For continuity at x=2:

    limx2f(x)=f(2)

    Step 1: Value at the point

    f(2)=k(22)=4k

    Step 2: Limit as x2

    Since the function changes definition at x=2, we use left-hand limit (LHL) and right-hand limit (RHL):

    Left-hand limit (LHL)

    limx2f(x)=limx2kx2=k(22)=4k

    Right-hand limit (RHL)

    limx2+f(x)=limx2+3=3

    Condition for continuity

    LHL=RHL=f(2)

    So,4k=3

    k=34

    Final Answer

    k=34

    Thus, the function is continuous at x=2 when k=34.


    Question 28

    Find the value of k so that the function f is continuous at x=π:

    f(x)={kx+1,xπcosx,x>π

    Solution

    For continuity at x=π, we require:

    limxπf(x)=f(π)

    Step 1: Value of the function at x=π

    Since x=π falls in the first part (xπ):

    f(π)=kπ+1Step 2: Left-hand limit (LHL)

    limxπf(x)=limxπ(kx+1)=kπ+1

    Step 3: Right-hand limit (RHL)

    limxπ+f(x)=limxπ+cosx=cosπ
    cosπ=1

    Condition for Continuity

    LHL=RHL=f(π)
    kπ+1=1

    Solve for k

    kπ=11=2

    k=2π


    Question 29

    Find the value of k so that the function f is continuous at x=5:

    f(x)={kx+1,x53x5,x>5

    Solution

    For continuity at x=5, we need:

    limx5f(x)=f(5)

    Step 1: Function value at the point

    Since x5:

    f(5)=k(5)+1=5k+1

    Step 2: Left-hand limit (LHL) as x5

    limx5f(x)=limx5(kx+1)=5k+1

    Step 3: Right-hand limit (RHL) as x5+

    limx5+f(x)=limx5+(3x5)=3(5)5=155=10

    Step 4: Apply continuity condition

    LHL=RHL=f(5)
    5k+1=10

    5k=9

    k=95


    Question 30

    Find the values of a and b such that the function

    f(x)={5,x2ax+b,2<x<1021,x10

    is continuous.

    Solution

    For continuity, the function must be continuous at:

    • x=2 (where left part meets the middle part)

    • x=10 (where middle part meets the right part)

    Continuity at x=2

    limx2f(x)=f(2)=5
    limx2+f(x)=a(2)+b=2a+b

    For continuity:

    2a+b=5(Equation 1)

    Continuity at x=10

    limx10f(x)=a(10)+b=10a+b
    f(10)=21

    For continuity:

    10a+b=21(Equation 2)

    Solve Equations (1) and (2)

    2a+b=5
    10a+b=21

    Subtract (1) from (2):

    (10a+b)(2a+b)=215
    8a=16

    a=2

    Substitute a=2 into Equation (1):

    2(2)+b=5

    4+b=5

    b=1


    Question 31

    Show that the function

    f(x)=cos(x2)

    is a continuous function.

    Solution

    We know that:

    • x2 is a polynomial → continuous everywhere

    • cosx is a continuous function for all real numbers

    A composition of two continuous functions is also continuous.

    Here,

    f(x)=cos(x2)=cos[g(x)]where g(x)=x2

    Since both g(x) and cosx are continuous, therefore:

    f(x)=cos(x2) is continuous for all xR

    Answer:

    cos(x2) is continuous everywhere.


    Question 32

    Show that the function

    f(x)=cosx

    is a continuous function.

    Solution

    • cosx is continuous for all real numbers

    • The absolute value function x is also continuous

    • The composition of continuous functions is continuous

    f(x)=cosx=g(x),where g(x)=cosx

    Since both g(x) and x are continuous,

    f(x)=cosx is continuous for all x

    Answer:

    cosx is continuous for all real x.


    Question 33

    Examine whether

    f(x)=sinx

    is a continuous function.

    Solution

    • x is continuous for all real numbers

    • sinx is continuous for all real numbers

    • Composition of continuous functions is continuous

    Thus:

    f(x)=sin(x)=sin(g(x)),g(x)=x

    Since both are continuous,

    sinx is continuous for all x

    Answer:

    sinx is continuous everywhere.


    Question 34

    Find all the points of discontinuity of

    f(x)=xx+1

    Solution

    Check where each absolute expression changes form.

    Break points occur where inside values become zero:

    x=0andx=1

    So evaluate function in intervals:

    Case 1: x<1

    x=x,x+1=(x+1)
    f(x)=x((x+1))=x+x+1=1

    Case 2: 1x<0

    x=x,x+1=x+1
    f(x)=x(x+1)=2x1

    Case 3: x0

    x=x,x+1=x+1
    f(x)=x(x+1)=1

    Check continuity at critical points

    At x=1

    limx1f(x)=1
    limx1+f(x)=2(1)1=21=1
    f(1)=2(1)1=1

    So continuous at x=1


    At x=0

    limx0f(x)=2(0)1=1
    limx0+f(x)=1
    f(0)=1

    So continuous at x=0


    Final Answer

    The function f(x)=xx+1 is continuous everywhere.

  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 13.

    Is the function defined by

    f(x)={x+5,if x1x5,if x>1

    a continuous function?

    Answer

    To check the continuity of the function at x=1, evaluate the following:

    Value of the function at x=1

    Since x1:

    f(1)=1+5=6

    Left-hand limit (LHL) as x1

    limx1(x+5)=6

    Right-hand limit (RHL) as x1+

    limx1+(x5)=4

    Comparison

    LHL=6,RHL=4,f(1)=6

    Since

    LHLRHL

    Final Answer

    The function is not continuous at x=1 because the left-hand limit and right-hand limit are not equal.


    Discuss the continuity of the function f, where f is defined by

    Question 14.

    Discuss the continuity of the function

    f(x)={3,if 0x14,if 1<x<35,if 3x10

    Answer

    To check continuity, we examine the points where the definition of the function changes:
    at x=1 and x=3.

    Continuity on the intervals

    • On [0,1]: f(x)=3 (a constant function → continuous).

    • On (1,3): f(x)=4 (constant function → continuous).

    • On [3,10]: f(x)=5 (constant function → continuous).

    So the only possible discontinuities are at the endpoints where the pieces join.


    Check continuity at x=1

    Left-hand limit (as x1)

    limx1f(x)=3

    Right-hand limit (as x1+)

    limx1+f(x)=4

    Value of the function

    f(1)=3

    Since

    limx1f(x)=3andlimx1+f(x)=4

    Left-hand limit ≠ Right-hand limit
    function is discontinuous at x=1


    Check continuity at x=3

    Left-hand limit (as x3)

    limx3f(x)=4

    Right-hand limit (as x3+)

    limx3+f(x)=5

    Value of the function

    f(3)=5

    Since

    45

    function is discontinuous at x=3.


    Final Conclusion

    The function f(x) is:

    • Continuous on each open interval (0,1), (1,3), and (3,10)

    • Discontinuous at the points x=1 and x=3


    Question 15

    Discuss the continuity of the function f defined by:

    f(x)={2x,if x<00,if 0<x<14x,if x>1

    Answer

    This is a piecewise function, and we need to check continuity at the points where the definition changes, i.e., at x=0 and x=1.


    Continuity for x<0, 0<x<1, and x>1

    In each interval, the function is a polynomial (linear function), and polynomials are continuous everywhere.
    So, f(x) is continuous within each interval.


    Check continuity at x=0

    Left-hand limit (LHL) as x0

    Using 2x:

    limx0f(x)=limx02x=0

    Right-hand limit (RHL) as x0+

    Using 0:

    limx0+f(x)=0

    Value of the function at x=0

    Notice: The function definition does not include x=0 in any case, so:

    f(0) does not exist

    Conclusion at x=0

    Even though

    LHL=RHL=0,

    the value of the function at x=0 is not defined.
    So, the function is not continuous at x=0.


    Check continuity at x=1

    Left-hand limit (LHL) as x1

    Using 0:

    limx1f(x)=0

    Right-hand limit (RHL) as x1+

    Using 4x:

    limx1+f(x)=4(1)=4

    Value of the function at x=1

    Not defined in any case, so:

    f(1) does not exist

    Conclusion at x=1

    Since

    LHL=04=RHL

    The limit does not exist. Therefore, the function is not continuous at x=1.

    Final Conclusion

    The function f(x) is:

    • Continuous within each open interval (,0), (0,1), and (1,)

    • Not continuous at x=0 (because f(0) is not defined)

    • Not continuous at x=1 (because left-hand and right-hand limits are not equal and f(1) is not defined)


    Question 16

    Discuss the continuity of the function f(x), where

    f(x)={2,if x12x,if 1<x12,if x>1

    Answer:

    To check continuity, we must examine the possible points of discontinuity—here the function changes its definition at x=1 and x=1.
    So, we check continuity at these points.


    Continuity at x=1

    Value of the function at x=1

    Since x1:

    f(1)=2

    Left-hand limit (LHL) as x1

    Using 2:

    limx1f(x)=2

    Right-hand limit (RHL) as x1+

    Using 2x:

    limx1+2x=2(1)=2

    Conclusion

    LHL=RHL=f(1)=2

    So, the function is continuous at x=1.


    Continuity at x=1

    Value of the function at x=1

    Using 2x:

    f(1)=2(1)=2

    Left-hand limit (LHL) as x1

    Using 2x:

    limx12x=2

    Right-hand limit (RHL) as x1+

    Using constant 2:

    limx1+f(x)=2

    Conclusion

    LHL=RHL=f(1)=2

    Thus, the function is continuous at x=1.


    Final Conclusion

    Since the function is continuous at both points where it changes its definition (x=1 and x=1), and there are no other breaks, gaps, or jumps:

    The function f(x) is continuous for all real values of x.

    Question 17

    Find the relationship between a and b so that the function f(x) defined by

    f(x)={ax+1,if x3bx+3,if x>3

    is continuous at x=3.

    Answer

    To ensure continuity at x=3, we require:

    Left-hand limit=Right-hand limit=f(3)

    Value of the function at x=3

    Using the first expression since x3:

    f(3)=a(3)+1=3a+1

    Left-hand Limit (LHL) as x3

    limx3f(x)=3a+1

    Right-hand Limit (RHL) as x3+

    Using bx+3:

    limx3+f(x)=b(3)+3=3b+3

    Condition for continuity

    3a+1=3b+3

    Solving

    3a3b=2
    ab=23

    Final Answer

    ab=23

    This is the required relationship between a and b for f(x) to be continuous at x=3.


    Question 18

    For what value of λ is the function defined by

    f(x)={λ(x22x),if x04x+1,if x>0

    continuous at x=0? What about at x=1?

    Answer

    Checking continuity at x=0

    Value of the function at x=0

    Since x0:

    f(0)=λ(0220)=λ(0)=0

    Left-hand limit (LHL)

    limx0λ(x22x)=λ(00)=0

    Right-hand limit (RHL)

    limx0+(4x+1)=4(0)+1=1

    Condition for continuity

    LHL=RHL=f(0)

    So,

    0=1

    This statement is never true, so no real value of λ can make the function continuous at x=0.


    Checking continuity at x=1

    At x=1, the value is taken from the second piece 4x+1, and there is no matching left-hand expression at 1, since the first part ends at x=0.
    Thus, the function is not defined in a neighborhood around 1 from the left side.

    Therefore, the function cannot be continuous at x=1.


    Final Conclusion

    There is no value of λ that makes the function continuous at x=0.
    The function is not continuous at x=1 because continuity cannot be checked.


    Question 19

    Show that the function g(x)=x[x] is discontinuous at all integral points.
    Here [x] denotes the greatest integer less than or equal to x.

    Answer

    Given Function

    g(x)=x[x]

    The expression x[x] represents the fractional part of x, denoted as {x}.
    Thus,

    g(x)={x}

    The fractional part function always satisfies:

    0{x}<1

    To show discontinuity at integer points

    Let x=n, where n is any integer.


    Left-hand limit (LHL) as xn

    When x approaches n from the left, x=nh where h0+.
    Then the greatest integer function gives:

    [x]=n1

    So,

    g(x)=x[x]=(nh)(n1)=1h

    Taking limit,

    limxng(x)=limh0+(1h)=1

    Right-hand limit (RHL) as xn+

    When approaching from the right, x=n+h, h0+, then

    [x]=n

    So,

    g(x)=(n+h)n=h

    Taking limit,

    limxn+g(x)=limh0+h=0


    Value of the function at x=n

    g(n)=n[n]=nn=0

    Comparison

    limxng(x)=1,limxn+g(x)=0,g(n)=0

    Since,

    limxng(x)limxn+g(x)

    The limit does not exist at x=n, and therefore, the function is discontinuous at every integer n.

    Final Conclusion

    g(x)=x[x] is discontinuous at all integral points.


    Question 20

    Is the function defined by

    f(x)=x2sinx+5

    continuous at x=π?

    Answer

    The function f(x)=x2sinx+5 is composed of the following functions:

    • x2 → a polynomial function (continuous for all real x)

    • sinx → a trigonometric function (continuous for all real x)

    • Constant 5 → continuous everywhere

    The sum or difference of continuous functions is also continuous for all real numbers.

    Therefore, f(x) is continuous everywhere, including at x=π.


    Check using limits

    Value at x=π:

    f(π)=π2sinπ+5=π20+5=π2+5

    Limit as xπ:

    limxπf(x)=limxπ(x2sinx+5)=π20+5=π2+5

    Comparison

    limxπf(x)=f(π)

    So the function is continuous at x=π.

    Final Answer

    Yes, the function is continuous at x=π.


    Question 21

    Discuss the continuity of the following functions:

    (a) f(x)=sinx+cosx
    (b) f(x)=sinxcosx
    (c) f(x)=sinxcosx


    Answer

    To discuss continuity, recall that:

    • sinx and cosx are continuous functions for all real values of x.

    • Sum, difference, and product of continuous functions are also continuous.

    So, we analyze each function:

    (a) f(x)=sinx+cosx

    • sinx is continuous for all xR

    • cosx is continuous for all xR

    The sum of two continuous functions is continuous.

    Conclusion

    f(x)=sinx+cosx is continuous for all real x.

    (b) f(x)=sinxcosx

    • Difference of continuous functions remains continuous.

    Conclusion

    f(x)=sinxcosx is continuous for all real x.

    (c) f(x)=sinxcosx

    • Product of two continuous functions is continuous.

    Conclusion

    f(x)=sinxcosx is continuous for all real x.


    Question 22

    Discuss the continuity of the cosine, cosecant, secant, and cotangent functions.

    Answer

    To discuss the continuity of these trigonometric functions, recall:

    • A function is continuous at a point if the limit exists and equals the value of the function at that point.

    • Discontinuity occurs where the function is not defined.


    Cosine Function

    f(x)=cosx

    • cosx is defined for all real values of x.

    • It is smooth and has no breaks or gaps.

    Conclusion

    cosx is continuous for all xR.


    Cosecant Function

    f(x)=cscx=1sinx

    • cscx is not defined where sinx=0.

    • sinx=0 at x=nπ, where n is any integer.

    Conclusion

    cscx is discontinuous at x=nπ.
    It is continuous for all other real values of x.


    Secant Function

    f(x)=secx=1cosx

    • secx is not defined where cosx=0.

    • cosx=0 at x=(2n+1)π2, where n is any integer.

    Conclusion

    secx is discontinuous at x=(2n+1)π2.
    It is continuous everywhere else.

    Cotangent Function

    f(x)=cotx=cosxsinx

    • cotx is not defined where sinx=0.

    • Similar to cosecant, discontinuity occurs at x=nπ.

    Conclusion

    cotx is discontinuous at x=nπ.
    It is continuous for all other real values of x.


    Question 23

    Find all points of discontinuity of

    f(x)={sinxx,if x<0x+1,if x0

    Answer

    The function changes its definition at x=0, so discontinuity (if any) must be checked at x=0.

    Step 1: Compute limit from the left side as x0

    Consider

    limx0sinxx

    We know the standard limit identity:

    limx0sinxx=1

    So,

    limx0f(x)=1

    Step 2: Compute right-hand limit as x0+

    From the second part f(x)=x+1 when x0:

    limx0+(x+1)=0+1=1

    Step 3: Value of the function at x=0

    Since x0,

    f(0)=0+1=1

    Comparison

    limx0f(x)=1,limx0+f(x)=1,f(0)=1

    Since all three are equal:

    limx0f(x)=f(0)

    Final Conclusion

    The function is continuous at x=0.

    There are no other points where the definition changes, and both components of the function are continuous in their respective intervals.

    Therefore, f(x) is continuous for all x.


    Question 24

    Determine if the function defined by

    f(x)={x2sin(1x),if x00,if x=0

    is continuous at x=0.


    Answer

    To check continuity at x=0, we need to verify:

    limx0f(x)=f(0)

    Given:

    f(0)=0

    Find the limit of f(x) as x0

    f(x)=x2sin(1x)

    We know that:

    1sin(1x)1

    Multiplying the entire inequality by x20:

    x2x2sin(1x)x2

    Now take the limit as x0:

    limx0x2=0andlimx0x2=0

    By Squeeze (Sandwich) Theorem:

    limx0x2sin(1x)=0

    Therefore:

    limx0f(x)=0=f(0)

    Final Conclusion

    Yes, the function f(x) is continuous at x=0.


     

     

     

     

     

  • Miscellaneous Exercises on Chapter 4, Class 12th, Maths

    Question 1.
    Prove that the determinant

    xsinθcosθsinθx1cosθ1x

    is independent of θ.

    Solution.

    Compute the determinant by expanding along the first row:

    D=xx11xsinθsinθ1cosθx+cosθsinθxcosθ1

    Evaluate each 2×2 determinant:

    xx11x=x((x)(x)11)=x(x21)=x3x,sinθsinθ1cosθx=sinθ((sinθ)x1cosθ)=sinθ(xsinθcosθ)=xsin2θ+sinθcosθ,cosθsinθxcosθ1=cosθ((sinθ)1(x)cosθ)=cosθ(sinθ+xcosθ)=sinθcosθ+xcos2θAdd the three parts:

    D=(x3x)+(xsin2θ+sinθcosθ)+(sinθcosθ+xcos2θ)=x3x+x(sin2θ+cos2θ)+(sinθcosθsinθcosθ)=x3x+x1+0=x3Thus the determinant equals x3, which does not depend on θ

    Question 2.
    Evaluate the determinant

    cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    Solution:

    Let

    D=cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    We will expand along the second row since it has a zero term.

    Step 1: Expansion along second row

    D=(sinβ)(1)2+1cosαsinβsinαsinαsinβcosα

    +(cosβ)(1)2+2cosαcosβsinαsinαcosβcosα

    Simplify the cofactors:

    D=sinβcosαsinβsinαsinαsinβcosα+cosβcosαcosβsinαsinαcosβcosα

    Step 2: Evaluate the 2×2 determinants

    For the first:

    cosαsinβsinαsinαsinβcosα=(cosαsinβ)(cosα)(sinα)(sinαsinβ)

    =sinβ(cos2α+sin2α)=sinβ.

    For the second:

    cosαcosβsinαsinαcosβcosα=(cosαcosβ)(cosα)(sinα)(sinαcosβ)

    =cosβ(cos2α+sin2α)=cosβ.

    Step 3: Substitute back

    D=sinβ(sinβ)+cosβ(cosβ)=sin2β+cos2β=1

     Final Answer:

    D=1

    Question 3.
    If

    A1=(3111565522)andB=(122130021),

    find (AB)1

    Solution:

    We know the property of inverse of a product:

    (AB)1=B1A1

    Step 1: Find B1

    Let

    B=(122130021)

    To find B1, compute by the adjoint method (or via row operations).
    After simplification, we get:

    B1=(326112225)

    Step 2: Compute (AB)1=B1A1

    A1=(3111565522)

    Now multiply B1 and A1:

    (AB)1=(326112225)(3111565522)

    Step 3: Matrix multiplication

    (AB)111=3(3)+2(15)+6(5)=930+30=9,(AB)121=3(1)+2(6)+6(2)=3+1212=3,(AB)131=3(1)+2(5)+6(2)=310+12=5,(AB)211=1(3)+1(15)+2(5)=315+10=2,(AB)221=1(1)+1(6)+2(2)=1+64=1,(AB)231=1(1)+1(5)+2(2)=15+4=0,(AB)311=2(3)+2(15)+5(5)=630+25=1,(AB)321=2(1)+2(6)+5(2)=2+1210=0,(AB)331=2(1)+2(5)+5(2)=210+10=2.

    Step 4: Write the result

    (AB)1=(935210102)

    Final Answer:

    (AB)1=(935210102)

    Question 4.
    Let

    A=(121231115)

    Verify that
    (i) [adjA]1=adj(A1)
    (ii) (A1)1=A


    Answer & proof

    (i) General identity and verification.

    For any invertible square matrix A we have the identity

    adjA=(detA)A1

    Taking inverses on both sides (and using (cM)1=c1M1 for scalar c0) gives

    (adjA)1=((detA)A1)1=(detA)1(A1)1=(detA)1A

    Also for the inverse matrix A1 we have

    adj(A1)=(det(A1))(A1)1

    But det(A1)=(detA)1 and (A1)1=A, so

    adj(A1)=(detA)1A

    Comparing the two expressions we obtain the required equality for any invertible A:

    (adjA)1=adj(A1)

    Verification for the given matrix A.

    Compute detA, adjA and the two sides explicitly:

    detA=5

    One finds

    adjA=(1491941111),A1=15(1491941111)=(14/59/51/59/54/51/51/51/51/5)

    Then

    (adjA)1=(1/detA)A=15(121231115)=(1/52/51/52/53/51/51/51/51)

    And using adj(A1)=(detA1)(A1)1=(detA)1A gives exactly the same matrix. So the identity holds for this A.

     

    (ii):

    Given

    A=(121231115),

    verify that

    (A1)1=A

    Step 1. Find A1

    We already know from earlier computation that

    det(A)=5

    Now, let’s find the adjoint of A:

    Compute cofactors of A:

    Cofactor matrix of A=(1491941111)

    So the adjoint of A is its transpose:

    adj(A)=(1491941111)

    Hence,

    A1=1det(A)adj(A)=15(1491941111)=(1459515954515151515)

    Step 2. Find (A1)1

    By the definition of matrix inverse:

    A1A=I

    Multiplying both sides on the left by (A1)1, we get:

    (A1)1(A1)A=(A1)1I,

    which simplifies to:

    A=(A1)1

    Step 3. Verify numerically

    If you actually take the inverse of A1 (by determinant and adjoint, or by direct computation),
    you’ll get back the original matrix A:

    (A1)1=(121231115)=A

    Final Answer:

    (A1)1=A.

    Question 5.
    Evaluate

    xyx+yyx+yxx+yxy

    Solution:

    Let

    D=xyx+yyx+yxx+yxy

    We will simplify this determinant using column operations.

    Step 1: Simplify columns

    Let’s apply the operation

    C3C3C1C2

    (i.e., replace the third column with C3C1C2)

    Compute the new third column entries:

    • For first row: (x+y)xy=0

    • For second row: xy(x+y)=xyxy=2y

    • For third row: y(x+y)x=yxyx=2x

    So the new determinant becomes:

    D=xy0yx+y2yx+yx2x

    Step 2: Expand along the first row (since it has a zero)

    D=xx+y2yx2xyy2yx+y2x

    Step 3: Compute each 2×2 determinant

    1. For the first one:

    x+y2yx2x=(x+y)(2x)(2y)(x)

    =2x(x+y)+2xy=2x22xy+2xy=2x2.

    1. For the second one:

    y2yx+y2x=y(2x)(2y)(x+y)

    =2xy+2y(x+y)=2xy+2xy+2y2=2y2

    Step 4: Substitute back

    D=x(2x2)y(2y2)=2x32y3=2(x3+y3)

    Final Answer:

    xyx+yyx+yxx+yxy=2(x3+y3).

    Question 6.
    Evaluate

    Solution:

    Let

    We’ll simplify this determinant using row operations.

    Step 1: Simplify rows

    Perform the following operations:

    Compute the new rows:

    • R2=(1,x+y,y)(1,x,y)=(0,y,0)

    • R3=(1,x,x+y)(1,x,y)=(0,0,y)

    So the new determinant becomes:

    Step 2: Expand along the first column

    Final Answer:

    Question 7.
    Solve the system

    {2x+3y+10z=4,4x6y+5z=1,6x+9y20z=2

    Solution (matrix method)

    Put u=1x,  v=1y,  w=1z. Then the system becomes linear in u,v,w:

    2u+3v+10w=4,4u6v+5w=1,6u+9v20w=2

    In matrix form At=b where

    A=(23104656920),t=(uvw),b=(412)

    Solve t=A1b. Doing this (or by Cramer’s rule / row reduction) gives

    t=(uvw)=(121315)

    So

    u=12,  v=13,  w=15

    Convert back to x,y,z:

    x=1u=2,y=1v=3,z=1w=5

    Check

    Substitute (x,y,z)=(2,3,5) into the original equations:

    22+33+105=1+1+2=4,4263+55=22+1=1

    ,62+93205=3+34=2

    all hold.

    Answer: x=2,  y=3,  z=5.

    Question 8.
    If x,y,z are nonzero real numbers, then the inverse of the matrix

    A=(x000y000z)

    is which of the following?

    (A) (x1000y1000z1)


    (B) xyz(x1000y1000z1)


    (C) 1xyz(x000y000z)


    (D) 1xyz(100010001)

    Answer: (A).

    Reason: For a diagonal matrix, the inverse (when all diagonal entries are nonzero) is the diagonal matrix of reciprocals. Check AA1=I:

    (x000y000z)(x1000y1000z1)=(100010001)

    Question 9.
    Let

    Which of the following is true?
    (A) det(A)=0
    (B) det(A)(2,)
    (C) det(A)(2,4)
    (D) det(A)[2,4]

    Solution

    Compute the determinant by expansion along the first row:

    So detA=2(1+sin2θ)

    Since 0sin2θ1, we have

    Thus det(A)[2,4]. The correct choice is (D).

     

     

     

     

  • Exercise-4.5-Part-2, Class 12th, Maths, NCERT

    Question 15.
    If

    A=(235324112),

    find A1. Using A1, solve the following system of equations:

    {2x3y+5z=11,3x+2y4z=5,x+y2z=3.

    Solution:

    We have

    A=(235324112)

    Let b=(1153)

    We know that

    Ax=bx=A1b

    Step 1: Find A1

    Using the adjoint and determinant method,

    det(A)=1

    The adjugate (adjoint) of A is:

    adj(A)=(01229231513)

    Hence,

    A1=1det(A)adj(A)=1×(01229231513)=(01229231513).

    Step 2: Use A1 to find x,y,z

    (xyz)=A1b=(01229231513)(1153)

    Now multiply:

    x=0(11)+1(5)+(2)(3)=5+6=1,y=2(11)+9(5)+(23)(3)=2245+69=2,z=1(11)+5(5)+(13)(3)=1125+39=3.

    Final Answers:

    A1=(01229231513),x=1,y=2,z=3

    Question 16.
    The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60.
    The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹90.
    The cost of 6 kg onion, 2 kg wheat and 3 kg rice is ₹70.
    Find the cost of each item per kilogram using the matrix method.


    Solution:

    Let the cost per kilogram of onion, wheat and rice be ₹o, ₹w and ₹r respectively.

    Then, according to the question, we have:

    4o+3w+2r=60,2o+4w+6r=90,6o+2w+3r=70

    Step 1: Write in matrix form

    (432246623)(owr)=(609070)

    That is,

    Ax=b,

    where

    A=(432246623),x=(owr),b=(609070)

    Step 2: Find A1

    We have

    det(A)=50,

    and the adjugate of A is

    adj(A)=(051030020201010)

    Hence,

    A1=150(051030020201010)=(01101535025251515)

    Step 3: Find x=A1

    (owr)=(01101535025251515)(609070)

    Now multiplying:

    o=0(60)+(110)(90)+(15)(70)=9+14=5,w=(35)(60)+0(90)+(25)(70)=3628=8,r=(25)(60)+(15)(90)+(15)(70)=24+18+14=8.

    Final Answers:

    Cost of onion per kg=5,Cost of wheat per kg=8,Cost of rice per kg=8

     

  • Exercise-4.5, Class 12th, Maths, Chapter 4, NCERT

    Examine the consistency of the system of equations in Exercises 1 to 6.

    1.
    {x+2y=22x+3y=3

    Solution. From the first, x=22y. Substitute: 2(22y)+3y=34y=3y=1. Then x=0.
    Unique solution: (x,y)=(0,1)


    2.
    {2xy=5x+y=4

    Solution. From second y=4x. Substitute: 2x(4x)=53x=9x=3. Then y=1
    Solution: (3,1)


    3.
    {x+3y=52x+6y=8

    Solution. The second equation is 2(x+3y)=10, but RHS is 8, not 10. The two equations are inconsistent (parallel, no solution).
    No solution. 


    4.
    {x+y+z=12x+3y+2z=2ax+ay+2az=4

    Solution. From (1) & (2): subtract 2(1) from (2) → y=0. Then x+z=1.
    Third equation is a(x+y+2z)=4. With y=0 this becomes a(x+2z)=4. Using x=1z:

    a((1z)+2z)=a(1+z)=41+z=4a(if a0).

    So for a0: z=4a1,  x=24a,  y=0 (unique solution).
    If a=0: third eqn becomes 0=4 impossible → inconsistent.

    So: consistent (unique) for a0 with (x,y,z)=(24a,0,4a1). Inconsistent when a=0.  depending on a.


    5.
    {3xy2z=22yz=13x5y=3

    Solution. From second: z=2y+1. From third: x=(3+5y)/3. Substitute into first:

    33+5y3y2(2y+1)=2(3+5y)y4y2=21=2,

    contradiction. So inconsistent (no solution)


    6.
    {5xy+4z=52x+3y+5z=25x2y+6z=1

    Solution. Subtract (1) from (3): y+2z=6y2z=6. Put in (2):

    2x+3(6+2z)+5z=22x+18+11z=2x=8112z

    Put x,y into (1): solving gives z=2, then y=2, x=3
    Unique solution: (x,y,z) = (3,2,-2)

    Solve system of linear equations, using matrix method, in Exercises 7 to 14.

    Question 7 

    Solve by matrix method:

    {5x+2y=4,7x+3y=5.

    Matrix form: Ax=b with

    A=[5273],x=[xy],b=[45]

    detA=5372=1514=1
    A1=[3275] (since 1/detA=1).
    Hence x=A1b=[3275][45]=[23]

    Answer: x=2,  y=3.


    Question 8 

    {2xy=2,3x+4y=3.

    Matrix form: A=[2134], b=[23]
    detA=243(1)=8+3=11

    A1=111[4132]
    x=A1b=111[4132][23]=[5111211]

    Answer: x=511,  y=1211.


    Question 9 

    {4x3y=3,3x5y=7.

    Matrix form: A=[4335], b=[37]
    detA=4(5)3(3)=20+9=11

    A1=111[5334]=111[5334]x=A1b=111[5334][37]=[6111911]

    Answer: x=611,  y=1911.


    Question 10 

    {5x+2y=3,3x+2y=5.

    Matrix form: A=[5232], b=[35]
    Subtract second from first: 2x=2x=1Then 5(1)+2y=35+2y=32y=8y=4.

    (Or use inverse: detA=5232=106=4, A1=14[2235] giving same result.)

    Answer: x=1,  y=4.


    Question 11 

    Solve the system

    {2x+y+z=1,x2yz=32,2x+y3z=0.

    Solution (matrix / elimination).

    Augmented matrix:

    [2111121322130]

    To avoid fractions, multiply row2 by 2 first:

    R22R2:[211124232130]

    Now eliminate using R1:

    • R2R2R1
      [0,5,32]

    • R3R3R1
      [0,0,41]

    Matrix becomes

    [211105320041]

    Back-substitution:

    From row3: 4z=1z=14

    Row2: 5y3z=25y314=25y=114y=1120

    Row1: 2x+y+z=12x+(1120)+14=1
    Compute y+z=1120+520=620=310
    So 2x310=12x=1310x=1320

    Answer: x=1320,  y=1120,  z=14


    Question 12 

    Solve the system

    {xy+z=4,2x+y3z=0,3y5z=9.

    Solution (matrix / substitution).

    From the third equation:

    3y5z=9y=9+5z3

    Substitute y into the first equation:

    x9+5z3+z=4

    Multiply by 3:

    3x(9+5z)+3z=12    3x92z=12    3x2z=21.

    Sox=7+23z.(*)

    Now substitute x and y into the second equation 2x+y3z=0

    2(7+23z)+9+5z33z=0.

    Compute left side:

    14+43z+9+5z33z=14+4z+9+5z33z

    =14+9+9z33z=14+3+3z3z=17.

    That gives 17=0, a contradiction.

    Conclusion: The system is inconsistent; no solution.

    Answer: No solution (inconsistent system).


    Question 13 

    Solve the system

    {2x+3y+3z=5,x2y+z=4,3xy2z=3.

    Solution (matrix / elimination).

    Augmented matrix:

    [233512143123]

    Use row2 as pivot to eliminate others:

    • R1R12R2
      [0,  7,  113]

    • R3R33R2
      [0,  5,  515]

    So we have

    [12140711305515]

    (reordered so row2 is the original R2).

    Eliminate y from row3 using row2:

    • R37R35R2

    7R3=[0,35,35105],  5R2=[0,35,565]

    So R3[0,0,4040] ⇒ 40z=40z=1

    Back-substitute:

    Row2: 7y+z=137y1=137y=14y=2

    Row1 (original row2): x2y+z=4x41=4x=1

    Answer: x=1,  y=2,  z=1


    Question 14 (Plain text)

    Solve the system

    {xy+2z=7,3x+4y5z=5,2xy+3z=12.

    Solution (matrix / elimination).

    Augmented matrix:

    [1127345521312]

    Eliminate below first pivot R1:

    • R2R23R1:  [0,  7,  1126]

    • R3R32R1:  [0,  1,  12]

    Swap R2 and R3 to use the simpler pivot:

    [11270112071126]

    Eliminate y from row3:

    • R3R37R2:  [0,  0,  412]

    So 4z=12z=3

    Back-substitute:

    Row2: yz=2y3=2y=1

    Row1: xy+2z=7x1+6=7x=2

    Answer: x=2,  y=1,  z=3

     

  • Exercise-4.4, Class 12th, Maths, Part -2

    Question 14 :

    For the matrix A=[3211], find the numbers a and b such that

    A2+aA+bI=0.

    Solution:

    Given:

    A=[3211]

    We are to find a and b such that

    A2+aA+bI=0

    Step 1: Compute A2

    A2=[3211][3211]Perform the multiplication:

    A2=[3×3+2×13×2+2×11×3+1×11×2+1×1]=[9+26+23+12+1]=[11843]

    Step 2: Substitute in the equation

    A2+aA+bI=0

    That means:

    [11843]+a[3211]+b[1001]=[0000]

    Step 3: Combine all matrices

    [11+3a+b8+2a4+a3+a+b]=[0000]

    Step 4: Equate corresponding elements to zero

    From the first row, first column:

    11+3a+b=0(1)

    From the first row, second column:

    8+2a=0(2)

    From the second row, first column:

    4+a=0(3)

    From the second row, second column:

    3+a+b=0(4)

    Step 5: Solve for a and b

    From (3):

    a=4

    Substitute a=4:

    3+(4)+b=0    b=1

    So a=4 and b=1.

    Step 6: Verification

    Check equation (1):

    11+3(4)+1=1112+1=0

    True. Check (2):

    8+2(4)=88=0True.

    Final Answer:

    a=4,b=1

     

    Question 15 

    For the matrix A=[111123213], show that

    A36A2+5A+11I=O.

    Hence, find A1.

    Solution

    Step 1 — compute A2 and A3.

    A=[111123213]

    Compute A2=AA:

    A2=[42138147314]

    Compute A3=A2A:

    A3=[871232769321358]

    Step 2 — form the combination A36A2+5A+11I.

    Calculate termwise:

    A36A2+5A+11I=[871232769321358]6[42138147314]+5[111123213]+11[100010001]=[824+5+11712+5+016+5+023+18+5+02748+10+1169+8415+03242+10+013+185+05884+15+11]=[000000000]

    So the relation is verified:

    A36A2+5A+11I=O

    Step 3 — find A1.

    Starting from

    A36A2+5A+11I=O,

    multiply on the right by A1 (which is valid because A is invertible if we can find A1 from this equation):

    A26A+5I+11A1=O

    Rearrange to solve for A1:

    11A1=A2+6A5I,A1=111(6AA25I)

    Now substitute the matrices A and A2:

    6AA25I=6[111123213][42138147314]5[100010001]
    =[6456206106(3)0128518(14)012706(3)018145]=[345914531]

    Thus

    A1=111[345914531]

    You can write it explicitly as

    A1=[311411511911111411511311111]

    (One may verify AA1=I)

    Question 16 : If

    A=[211121112],

    verify that

    A36A2+9A4I=O,

    and hence find A1.

    Solution

    Step 1 — compute A2.

    A2=AA=[211121112][211121112]=[655565556](Each entry calculated: e.g. top-left =22+(1)(1)+11=4+1+1=6, top-middle =2(1)+(1)2+1(1)=221=5

    Step 2 — compute A3.

    A3=A2A=[222121212221212122].

    (For example, top-left =62+(5)(1)+51=12+5+5=22, top-middle =6(1)+(5)2+5(1)=6105=21

    Step 3 — form the combination A36A2+9A4I

    Compute termwise:

    A36A2+9A4I=[222121212221212122]6[655565556]+9[211121112]4[100010001]=[2236+18421+309+02130+9+021+309+02236+18421+309+02130+9+021+309+02236+184]=[000000000]

    Thus the identity is verified:

    A36A2+9A4I=O

    Step 4 — find A1.

    Start from the matrix polynomial

    A36A2+9A4I=O

    Right-multiply by A1 (valid since the relation will imply invertibility):

    A26A+9I4A1=O

    Rearrange to solve for A1:

    4A1=A26A+9IA1=14(A26A+9I)

    Now substitute the matrices A and A2:

    A26A+9I=[655565556]6[211121112]+9[100010001]Compute it:

    A26A+9I=[612+95+6+056+05+6+0612+95+6+056+05+6+0612+9]=[311131113]

    Therefore

    A1=14[311131113]=[341414143414141434]

    (You can verify AA1=I directly.)

    Final answer:

    A36A2+9A4I=O,A1=[341414143414141434]

     

    Question 17 :

    Let A be a nonsingular square matrix of order 3×3. Then adjA is equal to

    (A) A
    (B) A2
    (C) A3
    (D) 3A


    Solution:

    We know the formula for the determinant of the adjugate (adjoint) of a square matrix:

    adjA=An1where n is the order of the square matrix.

    Here, A is of order 3×3.
    So n=3

    adjA=A31=A2

    Final Answer:

    adjA=A2

    Hence, the correct option is (B) A2

    Question 18:

    If A is an invertible matrix of order 2, then det(A1) is equal to

    (A) det(A)
    (B) 1det(A)
    (C) 1
    (D) 0


    Solution:

    We know the fundamental property of determinants:

    det(A1)=1det(A)

    provided A is invertible (that is, det(A)0).

    Final Answer:

    det(A1)=1det(A)

    Hence, the correct option is (B) 1det(A).

  • Exercise4.4, Class 12th, Maths, Chapter 4, NCERT

    Exercise 4.4 

    Question 1:
    Find  adjfor

    A=(1234)Solution:
    For a 2×matrix

    A=(abcd) adjA=(dbca)

    So for

    A=(1234)

    adjA=(4231)

    (You can check  A(adjA)=(detA)I

    detA=1423=2, and indeed AadjA=(2))

    Question 2:
    Find adj⁡ 

    forA=(112235201)

    Below I show the cofactors, the adjoint, and a verification

    AadjA=(det⁡ A)I

    Minors and cofactors

    Compute the  2×2  minors and cofactors

    Aij=(1)i+jMij

    Cofactor matrix [Aij]=(31261521115)

    (Each entry is the cofactor of the corresponding element of

    A.)

    adj

    (adjugate = transpose of cofactor matrix)

    adjA=(31111251625)

    Determinant and verification

    det A=27

    Now verify    

    AadjA=(detA)I=27I

    Multiplying gives

    AadjA=(270002700027)=27I,

    so the adjoint is correct.

    ___________________

    Verify the identity for both matrices

    Show that A(adjA)=(adjA)A=AI

    Question 3:

    A=(2346)

    Solution – Compute the determinant:

    A=2(6)3(4)=12+12=0.

    Compute the Adj (classical adjoint). For a 2×matrix

    (abcd),

    adjA=(dbca)

    Thus,

    adjA=(6342)

    Multiply:

    A(adjA)=(2346)(6342)=(0000)

    Similarly

    (adjA)A=(0000)

    Since 

    A=0, we have

    AI=0I=(0000)

    Hence,

    A(adjA)=(adjA)A=AI,

    as required.

    Question 4:

    A=(112302103)

    Solution – Compute the determinant –

    A=11

    Compute the adjugate (transpose of cofactor matrix). The cofactors lead to

    adjA=(0321118013).

    Multiply:

    A(adjA)=(110001100011)=11I,

    and likewise

    (adjA)A=11I

    Thus for this matrix also

    A(adjA)=(adjA)A=AI

    Conclusion

    Both verifications hold:

    • For

      A=(2346)    A(adjA)=(adjA)A=0=AI
    • For

      A=(112302103)

    A(adjA)=(adjA)A=11I.

    Question 5:

    Find A1 if A=(2243).

    Formula for inverse of a 2×2 matrix

    A=(abcd)

    its inverse (if 

    A

    is

    A1=1adbc(dbca

    Compute determinant

    A=(2)(3)(2)(4)=6+8=14

    Since

    A

    , the inverse exists.

    Apply the formula

    A1=114(3242)

    Final Answer:

    A1=114(3242)

    Verification (optional):

    AA1=(2243)114(3242)=114(140014)=I

    ✔ Verified.

     

    Question 6:

    Find A1 if A=(1532)

    Formula for inverse

    For any 

    2×

    matrix

    A=(abcd),

    if 

    A=adbc

    , then

    A1=1A(dbca)

    Compute determinant

    A=(1)(2)(5)(3)=2+15=13

    A=13

    , so the inverse exists.

    Apply the formula

    A1=113(2531)

    Final Answer:

    A1=113(2531)

    Verification (optional):

    AA1=(1532)113(2531)=113(130013)=I

    ✔ Verified.

    Question 7:

    Find A1 if A=(123024005)

    Observation

    is an upper triangular matrix, and for triangular matrices,

    A=product of diagonal elements.

    Determinant

    A=1×2×5=10

    Since 

    A0Aexists.

    Use properties of triangular matrices

    For an upper triangular matrix, its inverse is also upper triangular.
    We find 

    A1=[aij]

     such that 

    AA1=I

    Let

    A1=(abc0de00f)

    Then

    AA1=(123024005)(abc0de00f)=(ab+2dc+2e+3f02d2e+4f005f)

    We want this to equal the identity

    I=(100010001)

    Compare entries

    From the bottom:

    f=1    f=15

    2d=1    d=12

    a=1

    Now use off-diagonal equations:

    e+4f=0    e=2f=25

    b+2d=0    b=2d=1

    c+2e+3f=0    c=2e3f

    Substitute 

    e=2and  f=15:

    c=2(25)3(15)=4535=15

    Write the inverse

    A1=(1115012250015)

    Verification (optional):

    AA1=(123024005)(1115012250015)=I

    ✔ Verified.

    Question 8:

    Find A1 for A=(100330521)

    Solution.

    is lower triangular, so Ais also lower triangular.
    Let

    A1=(a00bc0def)

    and solve

    AA1=I

    .Multiply  and A1: From the first row: a=1

    .From the second row:

    3a+3b=0,3c=1    b=1,  c=13

    From the third row:

    5a+2bd=0,2ce=0,f=1

    Substituting

    a=1,  b=1,  c=1

     gives

    5(1)+2(1)d=0d=3,213e=0e=23,f=1.

    Thus

    A1=(10011303231)

    (You can verify 

    AA1=

    by multiplication.)

    Question 9:

    find A

    forA=(213410721)

    Determinant

    Compute A∣ 

    (expand along the first row):

    A=2102114071+34172

    =2(1)1(4)+3(1)=24+3=3

    So

    A=3

     (non zero) — inverse exists.

    Cofactor / Adjugate

    Compute the matrix of cofactors (I show the cofactors 

    Cij):

    [Cij]=(141523113126)

    The adjugate (adj A) is the transpose of this:

    adjA=(153423121116)

    Inverse

    A1=1AadjA=13(153423121116)=(13531432334131132)

    Equivalently-

    A1=13(153423121116)

    Quick check (first-row × first-column)

    213+143+3(13)=2+433=1,

    so the product gives the identity as expected.

    Question 10.

    Find A1 for A=(112023324)

    Solution:

    Compute 

    A

    . Expanding along the first row,

    A=12324(1)0334+20232=1(24(3)(2))+1(04(3)3)+2(0(2)23)=1(86)+1(9)+2(6)=2+912=1

    So 

    A=1

     (nonzero) and the inverse exists.

    Compute cofactors (minors 

    Mij

     and cofactors

    Cij=(1)i+jMij

    M11=2324=2,C11=+2,M12=0334=9,C12=9,M13=0232=6,C13=6,M21=1224=0,C21=0,M22=1234=2,C22=2,M23=1132=1,C23=1,M31=1223=1,C31=1,M32=1203=3,C32=+3,M33=1102=2,C33=+2,

    Cofactor matrix

    C=[Cij

    is

    C=(296021132)

    Adjugate is transpose of cofactor matrix:

    adjA=CT=(201923612)

    Inverse:

    A1=1AadjA=1adjA=(201923612)

    Question 11.

    Find A1 for A=(1000cosαsinα0sinαcosα)

    Solution:

    Write 

    A=diag(1,M)

    where

    M=(cosαsinαsinαcosα)

    Compute 

    detM

    :

    detM=(cosα)(cosα)(sinα)(sinα)=(cos2α+sin2α)=1

    So 

    A=1detM=1, hence 

    is invertible.

    Now compute M1using the 2×

    formula:

    M1=1detM(cosαsinαsinαcosα)

    =1(cosαsinαsinαcosα)=(cosαsinαsinαcosα)=M

    Thus 

    M1=M

     Equivalently 

    M2=I2

    Therefore

    A1=diag(1,M1)=diag(1,M)=A

    Final answer

    A1=(1000cosαsinα0sinαcosα)=A

    (Verification:

    A2=diag(1,M2)=diag(1,I2)=I3, so indeed 

    A1=A

    Question 12:

    Let A=(3725) and B=(6879).

    Verify that (AB)1=B1A1.

    Let’s verify 

    (AB)1=B1A1

    Compute

    A

    and 

    B1

    (a)  A1 A=3(5)7(2)=1514=1

    A1=(5723)

    (b)  B1 B=6(9)8(7)=5456=2

    B1=12(9876)=(924723)

    Compute

    AB AB=(3725)(6879)=(36+7738+7926+5728+59)=(67874761)

    Compute

    (AB)1 AB=67(61)87(47)=40874089=2

    (AB)1=12(61874767)=(612872472672)

    Compute

    B1A1 B1A1=(924723)(5723)

    Multiply:

    B1A1=((92)(5)+4(2)(92)(7)+4(3)(72)(5)+(3)(2)(72)(7)+(3)(3))=(612872472672)

    Compare

    (AB)1=(612872472672)=B1A1

    Hence verified:

    (AB)1=B1A1

    Question 13 :

    If A=[3112], show that A25A+7I=O. Hence, find A1.

    Solution:

    Let’s solve step-by-step carefully and clearly.

    Given:

    A=[3112]

    We have to show that

    A25A+7I=O

    and then use this result to find A1

    Step 1: Compute A2

    A2=AA=[3112][3112]

    Multiply carefully:

    A2=[(3)(3)+(1)(1)(3)(1)+(1)(2)(1)(3)+(2)(1)(1)(1)+(2)(2)]=[913+2321+4]=[8553]

    So,

    A2=[8553]

    Step 2: Compute 5A and 7I

    5A=5[3112]=[155510]
    7I=7[1001]=[7007]

    Step 3: Compute A25A+7I

    A25A+7I=[8553][155510]+[7007]

    First subtract A25A:

    [815555(5)310]=[7007]

    Now add 7I:

    [7007]+[7007]=[0000]

    Hence proved:

    A25A+7I=O

    Step 4: Finding A1

    From the equation:

    A25A+7I=0

    Rearrange it as:

    A25A=7IMultiply both sides by A1(on the right):

    A5I=7A1

    So,A1=17(5IA)

    Step 5: Substitute values

    A1=17(5[1001][3112])
    A1=17[53010(1)52]=17[2113]

    Click Here For Question 14 to 18 of Exercise 4.4

     

  • Exercise-4.3, Class 12th, Maths, Chapter 4, NCERT

    1. Write minors and cofactors of the elements of the following determinants:

    (i) Δ=2403

    For a 2×2 determinant the minor Mij of element aij is the determinant left after deleting its row and column; for 2×2 deleting a row & column leaves a 1×1 number.

    Elements and their minors:

    • a11=2:  M11=3. Cofactor A11=(1)1+1M11=+3

    • a12=4:  M12=0. Cofactor A12=(1)1+2M12=0=0

    • a21=0:  M21=4. Cofactor A21=(1)2+1M21=4

    • a22=3:  M22=2. Cofactor A22=(1)2+2M22=+2

    (You can check: expansion along first row gives Δ=2A11+4A12=23+40=6, and direct determinant 2340=6)


    (ii) Δ=acbd

    Minors (each 1×1 entry):

    • M11=d,  A11=+d

    • M12=b,  A12=(1)1+2b=b

    • M21=c,  A21=(1)2+1c=c

    • M22=a,  A22=+a

    (So cofactors matrix is (dbca))


    2. Write minors and cofactors for the following 3×3 determinants:

    (i) I3=100010001

    We give minors Mij and cofactors Aij=(1)i+jMij

    Because I3 is diagonal, minors are determinants of the 2×2submatrices:

    Row 1:

    • M11=1001=1,  A11=+1

    • M12=0001=0,  A12=0=0

    • M13=0100=0,  A13=+0=0

    Row 2:

    • M21=0001=0,  A21=0=0

    • M22=1001=1,  A22=+1

    • M23=1000=0,  A23=0=0

    Row 3:

    • M31=0010=0,  A31=+0=0

    • M32=1000=0,  A32=0=0

    • M33=1001=1,  A33=+1

    (So adj I3 = transpose of cofactor matrix = identity again.)


    (ii) Δ=104351012

    Compute minors (each is a 2×2 determinant) and cofactors:

    Row 1:

    • M11=5112=5211=101=9,  A11=+9

    • M12=3102=3210=6,  A12=(1)1+26=6

    • M13=3501=3150=3,  A13=+3

    Row 2:

    • M21=0412=0241=4,  A21=(1)2+1(4)=+4

    • M22=1402=1240=2,  A22=+2

    • M23=1001=1100=1,  A23=(1)2+31=1

    Row 3:

    • M31=0451=0145=20,  A31=(1)3+1(20)=20
      (note sign: (1)4=+1, so A31=+(20)=20

    • M32=1431=1143=112=11,  A32=(1)3+2(11)=+11

    • M33=1035=1503=5,  A33=(1)3+35=+5

    (You can verify determinant by expansion: Δ=1A11+0A12+4A13=19+0+43=9+12=21

    Direct check yields same.)


    3. Using cofactors of elements of the second row, evaluate

    Δ=538201123

    We will expand along the second row: Δ=a21A21+a22A22+a23A23

    Compute the cofactors (minors first):

    • For a21=2: M21=3823=3382=916=7
      A21=(1)2+1M21=(7)=+7

    • For a22=0: M22=5813=5381=158=7
      A22=(1)2+2M22=+7

    • For a23=1: M23=5312=5231=103=7
      A23=(1)2+3M23=7

    Now expansion:

    Δ=2A21+0A22+1A23=27+0+1(7)=147=7

    (You may check by any other expansion; result is 7.)


    4. Using cofactors of elements of the third column, evaluate

    Δ=111xyzyzx

    We expand along third column: Δ=a13A13+a23A23+a33A33
    where a13=1,  a23=z,  a33=x

    Compute minors and cofactors:

    • A13=(1)1+3M13=(1)4M13=+M13
      M13=xyyz=xzy2

    • A23=(1)2+3M23=(1)5(M23)=M23 (Simpler: A23=M23)
      M23=11yz=1z1y=zy
      So A23=(zy)=yz

    • A33=(1)3+3M33=+M33
      M33=11xy=1y1x=yx
      So A33=yx

    Now expand:

    Δ=1(xzy2)+z(yz)+x(yx)

    Simplify term-by-term:

    Δ=xzy2+zyz2+xyx2.

    Group like terms:

    Δ=x2+(xz+zy+xy)(y2+z2)

    We can rewrite symmetric grouping if desired. But we can also notice a factorization — rearrange as

    Δ=(x2+y2+z2)+(xy+yz+zx).

    Thus

    Δ=(xy+yz+zx)(x2+y2+z2)

    (That is the simplest closed form. You may also write Δ=12[(xy)2+(yz)2+(zx)2] — indeed expanding that gives the same value. So Δ0 and equals zero exactly when x=y=z.)


    5. If Δ=[aij] is the 3×3 determinant and Aij are cofactors of aij, then which of the following equals Δ?

    Options:

    • (A) a11A31+a12A32+a13A33

    • (B) a11A11+a12A21+a13A31

    • (C) a21A11+a22A12+a23A13

    • (D) a11A11+a21A21+a31A31

    Solution / reasoning.

    Standard properties of cofactors / expansions:

    • Determinant expansion along the first row gives
      Δ=a11A11+a12A12+a13A13

    • Expansion along the first column gives
      Δ=a11A11+a21A21+a31A31

    Option (D) exactly matches the expansion along the first column, so it equals Δ.
    Options (A), (B), (C) are mixed-index combinations that do not in general equal Δ (they give either other identities or zero). For example, the sum of elements of one row multiplied by cofactors of a different row equals 0.

    Therefore the correct choice is

    (D)  a11A11+a21A21+a31A31

  • Exercise-4.2, Class 12th, Maths, Chapter 4, NCERT

    Question 1 (Area of triangles)

    Find area of the triangle whose vertices are:
    (i) (1,0),(6,0),(4,3)(ii) (2,7),(1,1),(10,8)

    (iii) (2,3),(3,2),(1,8).

    Method. Area =12x1(y2y3)+x2(y3y1)+x3(y1y2)

    (i) x1=1,y1=0;  x2=6,y2=0;  x3=4,y3=3

    S=121(03)+6(30)+4(00)

    =123+18+0=12(15)=152.

    (ii) (2,7),(1,1),(10,8)

    S=122(18)+1(87)+10(71)

    =1214+1+60=12(47)=472

    (iii) (2,3),(3,2),(1,8)

    S=122(2(8))+3((8)(3))+(1)((3)2)

    =122015+5=12(30)=15


    Question 2 (Collinearity)

    Show that A(a,b+c),  B(b,c+a),  C(c,a+b) are collinear.

    Solution. Points are collinear iff area of triangle ABC is zero. Compute

    Δ=ab+c1bc+a1ca+b1=a((c+a)(a+b))+b((a+b)(b+c))+c((b+c)(c+a))

    Simplify each bracket:

    a(cb)+b(ac)+c(ba)=acab+abbc+bcac=0

    Hence Δ=0 so A,B,C are collinear.


    Question 3 (Values of k for area = 4)

    Find k if area =4 for:
    (i) (k,0),(4,0),(0,2)(ii) (2,0),(0,4),(0,k).

    (i) Using determinant formula:

    Δ=k(02)+4(20)+0(00)=2k+8.

    Area =12Δ=4 ⁣2k+8 ⁣=8
    So 2k+8=8 or 2k+8=8 giving k=0 or k=8
    k=0 or 8

    (ii)

    Δ=2(4k)+0+  0=8+2k

    128+2k=48+2k=8. So 8+2k=8 or 8+2k=8
    gives k=8 or k=0
    k=0 or 8.


    Question 4 (Equation of a line using determinants)

    (i) line joining (1,2) and (3,6).(ii) line joining (3,1) and (9,3).

    Use determinant form for line through (x1,y1),(x2,y2)

    xy1x1y11x2y21=0.

    (i) xy1121361=0

    x(26)y(13)+1(66)=4x+2y=0y=2x.

    (ii) xy1311931=0

    x(13)y(39)+1(93)=2x+6y=0x3y=0.


    Question 5 (Find k from given area = 35)

    If area of triangle is 35 with vertices (2,6),(5,4),(k,4)

    The points (5,4) and (k,4) have same y-coordinate, so base =k5, height from (2,6) to line y=4 is 4(6)=10

    Area =12baseheight=12k510=5k5=35
    So k5=7k5=±7k=12 or k=2.

    k=12 or k=2 (So the correct choice from the options is the pair 12,2)

  • Exercise-4.1, Class 12th, Maths, Chapter 4, NCERT

    DETERMINANTS

    Question 1

    Evaluate 2451

    Solution.
    det=2(1)4(5)=2+20=18


    Question 2

    (i) cosθsinθsinθcosθ

    Solution 2 (i):

    det=cosθcosθ(sinθ)sinθ=cos2θ+sin2θ=1.

    Question 2 (ii):

    x2x+1x1x+1x+1Solution:

    We know that for a 2×2 determinant.

    Now compute:

    det=(x2x+1)(x+1)(x1)(x+1).

    Step 1: Expand both terms

    (x2x+1)(x+1)=x3+x2x2x+x+1=x3+1
    (x1)(x+1)=x21

    Step 2: Substitute back

    det=(x3+1)(x21)=x3x2+2

    Question 3

    If A=(1242), show 2A=4A

    Solution.
    For an n×n matrix scaling by scalar k multiplies the determinant by kn. Here n=2 and k=2. So 2A=22A=4A

    (Direct check: A=1224=28=6. Then 2A=det(2484)=2448=832=24=4(6)


    Question 4

    If A=(101012004), show 3A=27A

    Solution.
    A is 3×3. Scaling by 3 multiplies determinant by 33=27. Hence 3A=27A.

    (One can check: A is product of diagonal entries 114=4.

    3A has diagonal 3,3,12 so determinant 3312=108=274


    Question 5 — Evaluate the following determinants

    (i) 312001350

    Solution (5.i).
    Expand along second row (only one nonzero entry a23=1):

    Minor for a23 is 3135=3(5)(1)3=15+3=12

    Cofactor C23=(1)2+3(12)=1(12)=12. Then determinant = a23C23=(1)12=12


    (ii) 345112231

    Solution (5.ii).
    Compute by expansion / rule of Sarrus:

    det=31231(4)1221+51123.

    Evaluate minors:
    So det=37+45+51=21+20+5=46


    (iii) 012103230

    Solution (5.iii).
    Compute (expanding first row):

    det=0()11320+21023

    First minor: (1)0(3)(2)=06=6; the corresponding contribution is 1(6)=6
    Second minor: (1)30(2)=3; contribution 2(3)=6. Sum 66=0


    (iv) 212021350

    Solution (5.iv).
    Expand along first row:

    det=22150(1)0130+(2)0235

    Compute minors: first =20(1)(5)=05=52(5)=10
    second minor =00(1)3=3 ⇒ sign gives +13=+3
    third minor =0(5)23=6 ⇒ multiplied by 2 gives +12.
    Sum 10+3+12=5.


    Question 6

    If A=(112213549), find A

    Solution.
    Expand along first row:

    A=1134912359+(2)2154

    Compute minors: first = 1(9)(3)4=9+12=3
    second = 2(9)(3)5=18+15=3. With the minus sign yields 1(3)=+3.
    third minor = 2415=85=3, times 2 gives 6. Sum 3+36=0

    So A=0

    Question 7 (i):

    Find the value of x if 2451=2x46x


    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbcStep 1: Compute the determinant on the left-hand side (LHS)

    2451=(2)(1)(4)(5)=220=18Step 2: Compute the determinant on the right-hand side (RHS)

    2x46x=(2x)(x)(4)(6)=2x224

    Step 3: Set them equal

    18=2x224.

    Simplify:

    2x2=18+24=6.
    x2=3.
    x=±3

    Question 7 (ii):

    Find the value of x if 2345=x32x5

    Solution:

    For any 2×2 matrix
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    2345=(2)(5)(3)(4)=1012=2

    Step 2: Compute RHS

    x32x5=(x)(5)(3)(2x)=5x6x=x

    Step 3: Equate LHS and RHS

    2=xx=2

     

    Question 8:

    If x218x=62186, then find x

    Options:
    (A) 6 (B) ±6 (C) 6 (D) 0


    Solution:

    For any 2×2 determinant
    (abcd),

    det=adbc.

    Step 1: Compute LHS

    x218x=xx218=x236Step 2: Compute RHS

    62186=66218=3636=0

    Step 3: Equate LHS and RHS

    x236=0

    x2=36

    x=±6

    Final Answer:

    (B)  x=±6

     

     

  • Miscellaneous Exercise on Chapter 3, Class 12th, Maths, NCERT

    Question 1:

    If A and B are symmetric matrices, prove that ABBA is a skew-symmetric matrix.

    Answer (proof):

    Recall a matrix M is skew-symmetric if MT=M

    Given A and B are symmetric, so

    AT=A,BT=B.

    Consider the transpose of ABBA:

    (ABBA)T=(AB)T(BA)T=BTATATBT.

    Using symmetry of A and B we get

    (ABBA)T=BAAB=(ABBA).

    Thus (ABBA)T=(ABBA), so ABBA is skew-symmetric.

    (As a remark, every skew-symmetric matrix has zeros on its diagonal, so the diagonal entries of ABBA are all zero.)

    Question 2:

    Show that the matrix BAB is symmetric according as A is symmetric or skew-symmetric.


    Answer (proof):

    Let A and B be square matrices of the same order, and let B denote the transpose of B.
    We need to show that:

    • If A is symmetric, then BAB is symmetric.

    • If A is skew-symmetric, then BAB is skew-symmetric.


    Case 1: A is symmetric

    If A is symmetric, then A=A.

    Consider (BAB):

    (BAB)=BAB.

    But since A=A,

    (BAB)=BAB.

    Hence, BAB is symmetric.


    Case 2: A is skew-symmetric

    If A is skew-symmetric, then A=A.

    Now, take the transpose of BAB:

    (BAB)=BAB=B(A)B=BAB.

    Thus, (BAB)=BAB,
    which means BAB is skew-symmetric.

    Hence proved:
    The matrix BAB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.

    Question 3:

    Find the values of x,y,z if A=(02yzxyzxyz) satisfies ATA=I.


    Answer (solution):

    Compute ATA. A straightforward multiplication gives

    ATA=(2x20006y20003z2).

    For ATA=I we must have the diagonal entries equal to 1, hence

    2x2=1,6y2=1,3z2=1

    Therefore

    x2=12    x=±12,y2=16    y=±16,z2=13    z=±13.

    All choices of independent signs are allowed, so the solutions are

    (x,y,z)=(±12, ±16, ±13),

    (8 sign-combinations in total).

    Question 4:

    For what values of x does [1  2  1](120201102)(02x)=0 ?

    Answer (solution):

    First compute the product of the matrix with the column vector:

    (120201102)(02x)=(10+22+0x20+02+1x10+02+2x)=(4x2x)

    Now left-multiply by [1  2  1]:

    [1  2  1](4x2x)=14+2x+12x=4+4x

    Set equal to zero:

    4+4x=0x=1

    Question 5:

    If A=(3112), show that A25A+7I=0


    Answer (solution):

    Given

    A=(3112),I=(1001).

    Step 1: Compute A2

    A2=(3112)(3112)=(3(3)+1(1)3(1)+1(2)(1)(3)+2(1)(1)(1)+2(2))=(8553).

    Step 2: Compute 5A

    5A=5(3112)=(155510)

    Step 3: Compute 7I

    7I=7(1001)=(7007)

    Step 4: Substitute into A25A+7I

    A25A+7I=(8553)(155510)+(7007)

    Compute step-by-step:

    A25A=(815555(5)310)=(7007)

    Now add 7I:

    A25A+7I=(7007)+(7007)=(0000)

    Hence proved:

    A25A+7I=0

     

    Question 6:

    Find x if [x    5    1](102021203)(x41)=0.

    Solution:

    We will simplify step-by-step.

    Step 1: Multiply the matrix with the column vector

    (102021203)(x41)=(1x+04+210x+24+112x+04+31)=(x+292x+3)

    Step 2: Multiply the row vector [x  5  1] with the result

    [x  5  1](x+292x+3)=x(x+2)+(5)(9)+(1)(2x+3)

    Simplify:

    =x2+2x452x3=x248.

    Step 3: Set equal to zero

    x248=0x2=48

    x  =±43

    Question 7

    A manufacturer produces three products x,y,z sold in two markets with annual sales
    S=(100002000180006000200008000)(rows: Market I, Market II; columns: x,y,z).
    (a) Unit sale prices p=(2.501.501.00).(b) Unit costs c=(2.001.000.50).
    Find (a) total revenue in each market, (b) gross profit in each market.

    Solution

    Use matrix multiplication. Revenue vector R (marketwise) is

    R=Sp.

    Compute component-wise:

    Market I revenue

    10000(2.5)+2000(1.5)+18000(1)=25000+3000+18000=46000.

    Market II revenue

    6000(2.5)+20000(1.5)+8000(1)=15000+30000+8000=53000.

    So

    R=(4600053000) rupees.

    (b) Total cost vector C=Sc:

    Market I cost

    10000(2)+2000(1)+18000(0.5)=20000+2000+9000=31000.

    Market II cost

    6000(2)+20000(1)+8000(0.5)=12000+20000+4000=36000.

    So

    C=(3100036000) rupees.

    Gross profit for each market G=RC:

    G=(46000310005300036000)=(1500017000) rupeesFinal answers

    (a) Total revenue — Market I: Rs. 46,000; Market II: Rs. 53,000.
    (b) Gross profit — Market I: Rs. 15,000; Market II: Rs. 17,000.

    (Also note matrix forms: R=Sp,  C=Sc,  G=S(pc)

     

    Question 8:

    Find the matrix X such that X(123456)=(789246).

    Solution:

    We are given:

    X(123456)=(789246)

    Let:

    A=(123456),B=(789246).

    We need X such that XA=B.

    To isolate X, multiply both sides on the right by AT(AAT)1:
    (since A is 2×3, not square, we use this formula)

    X=BAT(AAT)1.

    Step 1: Compute AAT

    AAT=(123456)(142536)=(12+22+3214+25+3641+52+6342+52+62)=(14323277)

    Step 2: Compute (AAT)1

    First find determinant:

    AAT=(14)(77)(32)(32)=10781024=54

    So,

    (AAT)1=154(77323214).

    Step 3: Compute BAT

    BAT=(789246)(142536)

    =((7)(1)+(8)(2)+(9)(3)(7)(4)+(8)(5)+(9)(6)(2)(1)+(4)(2)+(6)(3)(2)(4)+(4)(5)+(6)(6))

    Compute each entry:

    BAT=(716272840542+8+188+20+36)=(501222864)

    Step 4: Compute X=BAT(AAT)1

    X=154(501222864)(77323214).

    Compute the product:

    First row:

    (50)(77)+(122)(32)=3850+3904=54,
    (50)(32)+(122)(14)=16001708=108.

    Second row:

    (28)(77)+(64)(32)=21562048=108,
    (28)(32)+(64)(14)=896+896=0

    So:

    X=154(541081080)=(1220).

    Choose the correct answer in the following questions:

    Question 9:

    If A=(αβγα) is such that A2=I, then find the correct relation among α,β,γ.

    Options:
    (A) 1+α2+βγ=0
    (B) 1α2+βγ=0
    (C) 1α2βγ=0
    (D) 1+α2βγ=0


    Solution:

    Given

    A=(αβγα)

    Compute A2:

    A2=(αβγα)(αβγα)=(α2+βγαβαβαγαγγβ+α2)=(α2+βγ00α2+βγ)

    Thus,

    A2=(α2+βγ)I.

    We are told A2=I, so:

    (α2+βγ)I=I

    That means:

    α2+βγ=1

    Rearranging:

    1α2βγ=0

    Correct Option:

    (C)  1α2βγ=0.

    Question 10:

    If the matrix A is both symmetric and skew-symmetric, then:

    Options:
    (A) A is a diagonal matrix
    (B) A is a zero matrix
    (C) A is a square matrix
    (D) None of these


    Solution:

    By definition:

    • A is symmetric if AT=A

    • A is skew-symmetric if AT=A

    If A is both, then:

    A=AT=A

    This implies:

    A=A2A=0A=0

    That means all elements of A are zero.

    Correct Option:

    (B)  A is a zero matrix.

    Question 11:

    If A is a square matrix such that A2=A, then find (I+A)37A.

    Options:
    (A) A
    (B) IA
    (C) I
    (D) 3A


    Solution:

    We are given that:

    A2=A.

    Let’s expand (I+A)3:

    (I+A)3=I3+3I2A+3IA2+A3

    Simplify each term using I2=I and A2=A:

    (I+A)3=I+3A+3A+A3

    Now, compute A3:

    A3=A2A=AA=A2=A

    Substitute this back:

    (I+A)3=I+3A+3A+A=I+7A

    Now compute:

    (I+A)37A=(I+7A)7A=I

    Final Answer:

    (C)  I

     

  • Exercise-3.3, Class 12th, Maths, Chapter 3, NCERT

    Q1. (i)

    Matrix A=[5121]

    This is a column matrix (3×1).


    Transpose:

    To find A(or AT), we interchange rows and columns.

    So,

    A=[5121]

    Answer:

    A=[5121]

    (This is now a row matrix (1×3).)

     

    Q1- (ii).

    Matrix B=[1123]

    This is a 2×2 matrix.

    Transpose:

    We swap rows with columns:

    B=[1213]

    Answer:

    B=[1213]

     

    Q1 (iii)

    Matrix

    A=[156356231]

    This is a 3×3 matrix (3 rows, 3 columns).


    To find: A (the transpose)

    To find the transpose, we interchange rows and columns — that is, the first row becomes the first column, the second row becomes the second column, and so on.


    Step-by-step:

    Row Becomes Column
    Row 1 = (1,  5,  6) Column 1 = [156]
    Row 2 = (3,  5,  6)

    Column 2 = [356]

    Row 3 = (2,  3,  1) Column 3 = [231]

    Transpose:

    A=[132553661]

     

    A=[5121]

    (This is now a row matrix (1×3).)

     

    Question 2.

    Given:

    A=[123579211],B=[415120131]

    We have to verify:

    1️⃣ (A+B)=A+B

    2️⃣ (AB)=AB


    Step 1: Find A + B

    Add corresponding elements:

    A+B=[(1)+(4)2+13+(5)5+17+29+0(2)+11+31+1]=[532699142]


    Now find (A + B)′

    Take the transpose — interchange rows and columns:

    (A+B)=[561394292]


    Step 2: Find A′ and B′ separately

    Transpose of A:

    A=[152271391]

    Transpose of B:

    B=[411123501]


    Step 3: Find A′ + B′

    A+B=[(1)+(4)5+1(2)+12+17+21+33+(5)9+01+1]=[561394292]

    This is exactly equal to (A+B).

    Hence,

    (A+B)=A+B

    Step 4: Now find A – B

    Subtract corresponding elements:

    AB=[(1)(4)213(5)517290(2)11311]=[318459320]


    Now find (A – B)′

    (AB)=[343152890]

    Step 5: Find A′ – B′

    AB=[(1)(4)51(2)12172133(5)9011]=[343152890]

    This is exactly equal to (AB).

    Hence,

    (AB)=AB

     

    Question 3.

    Given

    A=[341201]


    B=[121123]

    , then verify that

    (i) (A + B)′ = A′ + B′ 

    (ii) (A – B)′ = A′ – B′

     Determine A from A

    Remember: A is the transpose of A.
    So to get A, we transpose A again.

    A=(A)=[310421]

    Hence

    A=[310421],B=[121123]

    Compute A+B

    Add corresponding elements:

    A+B=[3+(1)1+20+14+12+21+3]=[211544]

     Compute (A+B)

    Transpose the above matrix:

    (A+B)=[251414]

     Compute A+B

    We already know:

    A=[341201],B=[112213]

    Now add elementwise:

    A+B=[3+(1)4+11+22+20+11+3]=[251414]

    Therefore

    (A+B)=A+B

     Compute AB

    AB=[3(1)1201412213]=[431302] Compute (AB)

    (AB)=[433012]

     Compute AB

    AB=[3(1)4112220113]=[433012]

    Therefore

    (AB)=AB

    Question 4.

    Given:

    A=[2312],B=[1012]

    We need to find

    (A+2B)

     Find A from A

    Since A=[2312],

    Transpose it to get A:

    A=(A)=[2132]

     Compute 2B

    Multiply each element of B by 2:

    2B=[2×(1)2×02×12×2]=[2024]

     Compute A+2B

    A+2B=[2132]+[2024]=[4156]

     Find (A+2B)

    Take the transpose:

    (A+2B)=[4516]

    Question 5.

    For the matrices A and B, verify that (AB)′ = B′A′, where

    Concept Recap

    For any conformable matrices A and B:

    (AB)=BA

    That is, the transpose of a product = product of transposes in reverse order.

    Now, let’s check numerically.


    (i)

    A=[143],B=[121]


    Step 1️⃣: Compute AB

    Since A is 3×1 and B is 1×3,
    AB will be a 3×3 matrix.

    AB=[143][121]=[1(1)1(2)1(1)4(1)4(2)4(1)3(1)3(2)3(1)]=[121484363]

     Find (AB)

    Transpose means interchange rows and columns:

    (AB)=[143286143]

     Compute BA

    Now find B and A.

    B=[121],A=[143]

    Multiply B (3×1) with A (1×3):

    BA=[121][143]=[(1)(1)(1)(4)(1)(3)(2)(1)(2)(4)(2)(3)(1)(1)(1)(4)(1)(3)]

    =[143286143]

    Hence,

    (AB)=BA


    (ii)

    A=[012],B=[157]

    Compute AB

    AB=[012][157]=[0(1)0(5)0(7)1(1)1(5)1(7)2(1)2(5)2(7)]=[00015721014]

     Find (AB)

    (AB)=[01205100714]

    Compute BA

    B=[157],A=[012]

    Multiply:

    BA=[157][012]=[1(0)1(1)1(2)5(0)5(1)5(2)7(0)7(1)7(2)]=[01205100714]

    Hence,

    (AB)=BA

     

    Question 6.

    verify that A′ A = I

    (i)

    A=[cosαsinαsinαcosα]

     Find A

    A=[cosαsinαsinαcosα]

    Compute AA

    AA=[cosαsinαsinαcosα][cosαsinαsinαcosα]
    AA=[(cos2α+sin2α)(cosαsinαsinαcosα)(sinαcosαcosαsinα)(sin2α+cos2α)]=[1001]=I

    Hence, AA=I

    (ii)

    A=[sinαcosαcosαsinα]

     Find A

    A=[sinαcosαcosαsinα]

     Compute AA

    AA=[sinαcosαcosαsinα][sinαcosαcosαsinα]
    AA=[(sin2α+cos2α)(sinαcosαcosαsinα)(cosαsinαsinαcosα)(cos2α+sin2α)]=[1001]=I

    Hence, AA=I

    Q7.

    Recall:

    • A matrix A is symmetric if A=A.

    • A matrix A is skew-symmetric if A=A. (Note diagonal entries of a skew-symmetric matrix must be 0.)


    (i) Show A is symmetric

    A=[115121513]

    Find the transpose A (swap rows and columns):

    A=[115121513]

    We see A=A.
    Therefore A is symmetric


    (ii) Show A is skew-symmetric

    A=[011101110]

    Compute the transpose:

    A=[011101110]

    Compute A:

    A=[011101110]

    We have A=A. Also all diagonal entries are 0, as required.

    Therefore A is skew-symmetric

     

    Question 8.

    (i) (A + A′) is a symmetric matrix

    (ii) (A – A′) is a skew symmetric matrix

    Given

    A=[1567].

    First find the transpose:

    A=[1657].


    (i) A+A

    Compute:

    A+A=[1567]+[1657]=[2111114]

    Take its transpose:

    (A+A)=[2111114]Since (A+A)=A+A, the matrix A+A is symmetric.


    (ii) AA

    Compute:

    AA=[1567][1657]=[0110]

    Take its transpose:

    (AA)=[0110]=(AA)

    Since (AA)=(AA), the matrix AA is skew-symmetric.

     

    Question 9. Find

    12(A+A)and12(AA)

    We are given:

    A=[0aba0cbc0]

     Find A

    Transpose means interchange rows and columns:

    A=[0aba0cbc0] Compute A+A

    Add corresponding entries of A and A:

    A+A=[0+0a+(a)b+(b)(a)+a0+0c+(c)(b)+b(c)+c0+0]=[000000000]

     Compute AA

    Subtract corresponding entries:

    AA=[00a(a)b(b)(a)a00c(c)(b)b(c)c00]=[02a2b2a02c2b2c0]

    Multiply by ½

    12(A+A)=12[000000000]=[000000000]
    12(AA)=12[02a2b2a02c2b2c0]=[0aba0cbc0]

    Final Answers

    12(A+A)=[000000000],12(AA)=[0aba0cbc0]

    Question 10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

    we’ll write each matrix A as

    A=12(A+A)  +  12(AA),

    where S=12(A+A) is symmetric and K=12(AA) is skew-symmetric. I’ll give S and K for each part.


    (i) A=[3511]

    A=[3151]
    S=12(A+A)=12[6662]=[3331]


    K=12(AA)=12[0440]=[0220]

    So A=S+K with S symmetric and K skew.


    (ii) A=[622231213]

    This matrix is already symmetric (check A=A), so

    S=12(A+A)=A=[622231213],K=12(AA)=0=[000000000].


    (iii) A=[331221452]

    First compute A=[324325112]

    Then

    S=12(A+A)=12[615144544]=[3125212225222],

    which is symmetric, and

    K=12(AA)=12[053506360]=[0523252033230],

    which is skew-symmetric. (You can check S=S and K=K)


    (iv) A=[1512]

    A=[1152]
    S=12(A+A)=12[2444]=[1222],

    K=12(AA)=12[0660]=[0330].

    Question 11

    Given:
    A and B are symmetric matrices of the same order.
    That means:

    A=AandB=B

    We need to find the nature of the matrix ABBA

     Take transpose of ABBA

    (ABBA)=(AB)(BA)=BAAB

    Since A=A and B=B,

    (ABBA)=BAAB=(ABBA)

     Interpretation

    A matrix M is skew-symmetric if M=M.

    Here we found (ABBA)=(ABBA) Therefore, ABBA is a skew-symmetric matrix.

    Correct Option: (A) Skew symmetric matrix


    Question 12

    Given:

    A=[cosαsinαsinαcosα],andA+A=I

    We must find the value of α

    Compute A

    A=[cosαsinαsinαcosα]

     Compute A+A

    A+A=[cosα+cosαsinα+sinαsinαsinαcosα+cosα]=[2cosα002cosα]

     Given A+A=I

    [2cosα002cosα]=[1001]

    This gives:

    2cosα=1    cosα=12

     Solve for α

    cosα=12α=π3

     Final Answers 
    1️⃣ ABBA → Skew-symmetric matrix
    2️⃣ A+A=Iα=π3

  • Exercise-3.2, Class 12th, Maths, Chapter 3 – Matrices, NCERT

    Question 1

    Let

    A=[2432],B=[1325],C=[2534]

    Find:
    (i) A + B  (ii) A − B  (iii) 3A − C  (iv) AB  (v) BA


    Solution

    (i) A + B =
    Add corresponding elements:

    A+B=[2+14+33+(2)2+5]=[3717]

     

    (ii) A − B =

    AB=[21433(2)25]=[1153]

     


    (iii) 3A − C =
    First, find 3A:

    3A=[61296]

    Subtract C:

    3AC=[6(2)1259364]=[8762]


    (iv) AB =

    AB=[2(1)+4(2)2(3)+4(5)3(1)+2(2)3(3)+2(5)]=[626119]

     

    (v) BA =

    BA=[1(2)+3(3)1(4)+3(2)(2)(2)+5(3)(2)(4)+5(2)]=[1110112]


    Final Answers:

    (i)

    A+B=[3717]

    (ii)

    AB=[1153]

    (iii)

    3AC=[8762]

    (iv)

    AB=[626119]

    (v)

    BA=[1110112]


    Question 2

    Compute the following:

    (i)

    [abba]+[abba]

    (ii)

    [a2+b2b2+c2c2+a2a2+b2]+[c2+2ab2bc2ac2ab]

    (iii)

    [148528]+[61251653]+[768024]

    (iv)

    [cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]


    Solution

    (i) Add element-wise:

    =[2a2b02a]


    (ii)

    =[a2+b2+c2+2abb2+c2+2bcc2+a22aca2+b22ab]


    (iii)
    Add element-wise:

    =[14222121915]

     

    (iv)

    =[1111]


    Question 3

    Compute the indicated products:

    (i)

    [abba][abba]

    (ii)

    [234][123]

    (iii)

    [1223][123231]


    Solution

    (i)

    =[a2+b200a2+b2]

    (ii)

    2×1+3×2+4×3=20

    (iii)

    =[3418139]


    Question 4

    If

    A=[215011],  B=[314220],  C=[410312]

    Compute (A + B), (B − C), and verify A + (B − C) = (A + B) − C.


    A + B =

    [509211]

    B − C =

    [124112]

    A + (B − C) =

    [119101]

    (A + B) − C =

    [119101]

    Hence, verified.


    Question 5

    A=[211335625],B=[235114756]

    Compute 3A − 5B


    Step 1:

    3A=[633991518615],5B=[1015255520352530]

    Step 2: Subtract:

    3A5B=[41222445171915]

     

    Question 6

    Simplify:

    [cosxsinxsinxcosx][sinxcosxcosxsinx]

     

    Solution

    Multiply:
    (1,1):

    cosxsinx+sinxcosx=sin(2x)

    Result:

    [sin(2x)00sin(2x)]


    Question 7

    Find X and Y if

    (i)

    X+Y=[7025],XY=[3003]

    (ii)

    2X+3Y=[2340],3X+2Y=[2215]


    Solution

    Case (i):
    Add and subtract:

    2X=(X+Y)+(XY)=[10028]X=[5014]

    2Y=(X+Y)(XY)=[4022]Y=[2011]


    Case (ii):
    Multiply first by 3, second by 2 and subtract:

    (6X+9Y)(6X+4Y)=5Y=[2131410]

    Y=[251351452]

    Substitute in

    2X+3Y=[2340]

    X=[4535252]

     

    Question 8

    Find X, if

    Y=[3214]

    and

    2X+Y=[1032]


    Solution

    Given:

    2X+Y=[1032]

    Substitute Y:

    2X+[3214]=[1032]

    Now, move Y to RHS:

    2X=[1032][3214]=[2242]

    Divide both sides by 2:

    X=[1121]


    Question 9

    Find the values of x and y, if

    2[130x]+[y012]=[5618]


    Step 1: Expand the scalar multiplication

    2[130x]=[2602x]

    So the equation becomes:

    [2602x]+[y012]=[5618]


    Step 2: Add the two matrices on the LHS

    [2+y6+00+12x+2]=[5618]


    Step 3: Compare corresponding elements

    1. From (1,1): 2+y=5y=3

    2. From (2,2): 2x+2=82x=6x=3


    Final Answers:

    x=3,y=3


    Question 10

    Solve for x, y, z, t if

    2[xzyt]+3[1102]=[3546]


    Solution

    Step 1: Multiply 2 and 3 through matrices:

    [2x2z2y2t]+[3306]=[3546]

    Step 2: Add LHS:

    [2x+32z32y2t+6]=[3546]

    Step 3: Equate corresponding elements:

    1. 2x+3=3x=0

    2. 2z3=5z=4

    3. 2y=4y=2

    4. 2t+6=6t=0

    Hence

    x=0,  y=2,  z=4,  t=0


    Question 11

    If

    [x2]+[1y]=[105]

    Find x and y.


    Solution

    Add LHS element-wise:

    [x12+y]=[105]

    Comparing elements:

    x1=10x=11
    2+y=5y=3

    Answer:
    x=11,y=3


    Question 12

    Given equation:

    3[xyzw]=[x612w]+[4x+yz+w3]

    We need to find x  and  y.


    Step 1: Expand the LHS

    3[xyzw]=[3x3y3z3w]


    Step 2: Add the two matrices on RHS

    [x612w]+[4x+yz+w3]=[x+46+x+y1+z+w2w+3]


    Step 3: Equate the LHS and RHS

    [3x3y3z3w]=[x+46+x+y1+z+w2w+3]


    Step 4: Compare corresponding elements

    1. From (1, 1): 3x=x+42x=4x=2.

    2. From (1, 2): 3y=6+x+y2y=6+x2y=6+22y=8y=4.

    3. Other entries (involving z, w) are not required here.


    Final Answer:

    x=2,y=4

    Question 13

    If

    F(x)=[cosxsinx0sinxcosx0001],

    prove that F(x)F(y)=F(x+y)


    Solution

    Compute F(x)F(y):

    F(x)F(y)=[cosxsinx0sinxcosx0001][cosysiny0sinycosy0001]

    Multiply the first two rows:

    Top-left 2×2 block:

    [cosxcosysinxsiny(sinxcosy+cosxsiny)sinxcosy+cosxsinycosxcosysinxsiny]

    But using angle addition identities:

    cos(x+y)=cosxcosysinxsiny
    sin(x+y)=sinxcosy+cosxsiny

    So,

    F(x)F(y)=[cos(x+y)sin(x+y)0sin(x+y)cos(x+y)0001]=F(x+y)

    Hence proved.


    Question 14

    to show that matrix multiplication is not commutative, i.e.

    ABBA.

    Let’s solve step-by-step carefully.


    Given matrices

    A=(5167),B=(2134).


    Step 1: Compute AB

    AB=(5167)(2134).

    Multiply row by column:

    AB=((5)(2)+(1)(3)(5)(1)+(1)(4)(6)(2)+(7)(3)(6)(1)+(7)(4))=(1035412+216+28)=(713334)


    Step 2: Compute BA

    BA=(2134)(5167)

    Multiply:

    BA=((2)(5)+(1)(6)(2)(1)+(1)(7)(3)(5)+(4)(6)(3)(1)+(4)(7))=(10+62+715+243+28)=(1653925)


    Step 3: Compare

    AB=(713334),BA=(1653925).

    Clearly ABB


    Hence proved:
    Matrix multiplication is not commutative in general:

    ABBA.

     

    15. Find A25A+6I, where

    A=(201213110)

    Compute A2:

    A2=(512945414)

    Now 5A=(100510515550)
    and 6I=(600060006)

    Add them:

    A25A+6I=(512945414)+(100510515550)+(600060006)=(11315101410).


    16. If A=(102021203), prove A36A2+7A+2I=0.

    Compute (steps shown succinctly):

    A2=(5082458013),A3=(210341282334055).

    Now form A36A2+7A+2I. Term-by-term:

    • 6A2=(3004812243048078)

    • 7A=(7014014714021)

    • 2I=(200020002)

    Adding A3+(6A2)+7A+2I gives the zero matrix. So the identity holds.


    17.

    Given:

    A=(3242),I=(1001).

    We have to find the scalar k such that

    A2=kA2I.


    Step 1: Compute A2

    A2=(3242)(3242)=(33+(2)43(2)+(2)(2)43+(2)44(2)+(2)(2)).

    Simplify each element:

    A2=(986+41288+4)=(1244)


    Step 2: Write the given relation

    A2=kA2I.

    Substitute A2, A, and I:

    (1244)=k(3242)2(1001).

    Simplify the right-hand side:

    (3k22k4k2k2).


    Step 3: Equate corresponding entries

    {3k2=1,2k=2,4k=4,2k2=4.Now solve any one (they should all give the same k):

    • From the second: 2k=2k=1

    • From the first: 3k2=1k=1

    • Others also give k=1.

    All consistent.


    Final Answer:

    k=1.


    18. If A=(0tan(α2)tan(α2)0) and I is 2×2 identity, show

    I+A=(IA)(cosαsinαsinαcosα)

    (That is the standard Cayley-type relation when A uses tan(α/2)

    Proof sketch (algebraic verification): Put t=tan(α2). 

    Then

    I+A=(1tt1),IA=(1tt1)

    Use the trig identities

    cosα=1t21+t2,sinα=2t1+t2

    Multiply (IA) by the rotation matrix R(α)=(cosαsinαsinαcosα)

    (IA)R(α)=(c+tss+tctc+sts+c),

    substitute c=cosα, s=sinα and the formulas above; each entry simplifies to match I+A=(1tt1). Thus the identity holds.

    (If your printed sign convention for A is different — e.g. the off-diagonal signs reversed — paste the exact matrix and I’ll adapt the algebra.)


    19.

    A trust fund has ` 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

    (a) Rs 1800 (b) Rs 2000

    Answer – 

    A trust fund has ₹30,000 to invest in two types of bonds:

    • Bond 1 → 5 % interest per year

    • Bond 2 → 7 % interest per year

    We must divide ₹30,000 between them so that the annual total interest is:
    (a) ₹ 1 800 (b) ₹ 2 000


    Step 1: Define variables

    Let

    Then:{x+y=300000.05x+0.07y=I

    where I = required interest.


    Step 2: Matrix form

    [110.050.07]A[xy]=[30000I]That is,Ax=b.

    We can find x=A1b


    Compute A1

    For a 2×2 matrix A=[abcd]

    A1=1adbc[dbca]

    Here
    a=1, b=1, c=0.05, d=0.07

    det(A)=(1)(0.07)(1)(0.05)=0.02

    So:

    A1=10.02[0.0710.051]=[3.5502.550].

    Step 3: Multiply to find x and y

    [xy]=A1[30000I]=[3.5502.550][30000I]

    Compute components:

    x=3.5(30000)50I,y=2.5(30000)+50I.

    Simplify:

    x=10500050I,y=75000+50I.

    (a) For I=1800

    x=10500050(1800)=10500090000=15000,
    y=75000+50(1800)=75000+90000=15000.

    (b) For I=2000

    x=10500050(2000)=105000100000=5000,
    y=75000+50(2000)=75000+100000=25000.

    ✅ Final Answers Summary

    Case Required Interest 5 % Bond (x) 7 % Bond (y)
    (a) ₹ 1 800 ₹ 15 000 ₹ 15 000
    (b) ₹ 2 000 ₹ 5 000 ₹ 25 000

    So, by matrix multiplication,

    [xy]=[10500050I75000+50I],

    20. Bookshop: 10 dozen chemistry, 8 dozen physics, 10 dozen economics books; prices ₹80, ₹60, ₹40. Find total receipt.

    First convert dozens to counts: 10 dozen = 120, 8 dozen = 96, 10 dozen = 120. Multiply quantities by unit prices:

    120×80+96×60+120×40=9600+5760+4800=20,160.

    (Matrix form: [120 96 120](806040)=20160


    21. (Multiple choice) With X of order 2×n, Y of order 3×k, Z of order 2×p, W of order n×3, P of order p×k:

    What restriction on n,k,p so that PY+WY is defined?

    • For PY to be defined: P (size p×k) times Y (size 3×k) requires number of columns of P = number of rows of Y, so k=3.

    • For WY to be defined: W (size n×3) times Y (size 3×k) is defined for any n once k is known.

    • For PY and WY to be addable, their resulting orders must match: PY is p×k and WY is n×k. So p=n.

    Thus the restriction is k=3 and p=n.

    Answer: (A) k=3,p=n.


    22. If n=p, then order of 7X5Z where X is 2×n and Z is 2×p?

    If n=p then both X and Z are 2×n. So 7X5Z is of order 2×n. Answer: (B) 2×n.

  • Exercise-3.1, Class 12th, Maths, Chapter 3- Matrices, NCERT

    Exercise 3.1


    Question 1:

    In the matrix

    A=[251971517312125]

    write:
    (i) The order of the matrix
    (ii) The number of elements
    (iii) Write the elements a₁₃, a₂₁, a₃₃, a₂₄, a₂₃.

    Answer:
    (i) Order = 3 × 4
    (ii) Number of elements = 3 × 4 = 12
    (iii) a₁₃ = 19, a₂₁ = 1, a₃₃ = 12, a₂₄ = 3, a₂₃ = 17.


    Question 2:

    If a matrix has 24 elements, what are the possible orders it can have? What if it has 13 elements?

    Answer:
    We know that if a matrix has m × n elements, then total elements = m × n.

    (i) For 24 elements:
    Possible orders = (1,24), (2,12), (3,8), (4,6), (6,4), (8,3), (12,2), (24,1)

    (ii) For 13 elements (prime number):
    Possible orders = (1,13), (13,1)


    Question 3:

    If a matrix has 18 elements, what are its possible orders? What if it has 5 elements?

    Answer:
    (i) For 18 elements: m×n=18
    Possible orders = (1,18), (2,9), (3,6), (6,3), (9,2), (18,1)

    (ii) For 5 elements (prime): (1,5), (5,1)


    Question 4:

    Construct a 2 × 2 matrix A = [aᵢⱼ] where:

    (i) aᵢⱼ = 2i − j
    (ii) aᵢⱼ = i² − 3j
    (iii) aᵢⱼ = i² / 2j

    Answer:
    For i, j = 1, 2

    (i)

    A=[2(1)12(1)22(2)12(2)2]=[1032]

    (ii)

    A=[123(1)123(2)223(1)223(2)]=[2512]

    (iii)

    A=[122×1122×2222×1222×2]=[121421]


    Question 5:

    Construct a 3 × 4 matrix where:
    (i) aᵢⱼ = ½ (i − 3j)
    (ii) aᵢⱼ = 2i − j

    Answer:

    (i)

    A=[12.545.50.523.5501.534.5]

    (ii)

    A=[101232105432]


    Question 6:

    Find the values of x, y, and z from the following equations:

    (i)

    [x5zy15]=[262158]

    (ii)

    [5zx+y58x+y]=[x+zyzxzyz]

    Answer:

    (i) Comparing elements:
    x = 2, y = 1, z = 2.

    (ii) On comparing:
    x = 3, y = 1, z = 2.


    Question 7:

    Find a, b, c, d from the equation:

    [ab2ab2a+c3cd]=[015013]

    Answer:
    Equating elements:
    a − b = 0
    2a − b = −15
    2a + c = 0
    3c − d = 13

    Solving, we get
    a = −15, b = −15, c = 30, d = 77.


    Question 8:

    A = [aᵢⱼ] is a square matrix if:
    (A) m < n  (B) m > n  (C) m = n  (D) None of these

    Answer:
    (C) m = n


    Question 9:

    Which values of x and y make the following matrices equal?

    [3x+75y+12]=[3x028]

    Answer:
    3x + 7 = −3x ⇒ 6x = −7 ⇒ x = −7/6
    y + 1 = −2 ⇒ y = −3

    x = −7/6, y = −3


    Question 10:

    The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:
    (A) 27 (B) 18 (C) 81 (D) 512

    Answer:
    Each entry can be 0 or 1, i.e., 2 possibilities per element.
    Total = 23×3=29=512

    Answer: (D) 512

  • Miscellaneous Exercise on Chapter – 2, Class 12th, Maths, NCERT

    1. cos1(cos(13π/6))

    We know that cos1(cosθ)=θ if θ[0,π].

    13π/6=2π+π/6    cos(13π/6)=cos(π/6)

    Thus,

    cos1(cos(13π/6))=π/6


    2. tan1(tan(7π/6))

    tan1(tanθ)=θ if θ(π/2,π/2).

    7π/6=π+π/6    tan(7π/6)=tan(π/6)

    So,

    tan1(tan(7π/6))=π/6π=5π/6

    Since range is (π/2,π/2), principal value is π/6π=π/6


    3. Prove 2sin1(35)=tan1(247)

    Let sin135=θ, so sinθ=35.
    Then, cosθ=45

    tan(2θ)=2tanθ1tan2θ=2(34)1(34)2=247

    Hence,

    2sin1(35)=tan1(247)


    4. Prove sin1817+sin135=tan17736

    Let sin1817=α and sin135=β

    tanα=815,tanβ=34

    Thus,

    tan(α+β)=8/15+3/41(8/15)(3/4)=7736

    Hence proved.


    5. Prove cos145+cos11213=cos13365

    Let A=cos145,B=cos11213.

    cos(A+B)=cosAcosBsinAsinB
    =45121335513=3365

    Hence proved.


    6. cos11213+sin135=sin15665

    Let A=cos11213,B=sin135
    Then sinA=513,cosB=45

    sin(A+B)=sinAcosB+cosAsinB=51345+121335=5665

    Hence proved.


    7. tan16316=sin1513+cos135

    Let sin1513=A, cos135=Btan(A+B)=5/12+4/3151243=6316

    Hence proved.


    8. Prove tan11x1+x=12cos1x,x(0,1)

    Put x=cos2θ, then

    1x1+x=1cos2θ1+cos2θ=tanθ

    Thus,

    tan11x1+x=θ=12cos1x


    9. Prove cot11+sinx+1sinx1+sinx1sinx=x2Let t=tanx2, then:

    sinx=2t1+t2

    After rationalizing and simplifying, the expression equals cot1(1tan(x/2))=x2


    10. Prove tan11+x1x1+x+1x=π412cos1x

    Let x=cos2θ, then

    1+x1x1+x+1x=cosθsinθcosθ+sinθ=tan(π4θ)

    Hence,

    tan1(LHS)=π4θ=π412cos1x


    11. Solve 2tan1(cosx)=tan1(2cscx)

    Let tan1(cosx)=θ

    Then tan(2θ)=2tanθ1tan2θ=2cosx1cos2x=2cscx

    Hence proven.


    12. Prove tan11x1+x=π4tan1x

    Use the tangent subtraction identity:

    tan(π4tan1x)=1x1+x

    Taking tan1 both sides gives the result.


    13. sin(tan1x)=x1+x2

    Let tan1x=θtanθ=x

    So a right-angle triangle gives sinθ=x1+x2

    Hence,

    sin(tan1x)=x1+x2


    14. If sin1(12x2)=2sin1x

    Use double angle formula:

    sin(2sin1x)=2x1x2

    Equating 12x2=2x1x2 and solving gives x=0 or x=1.

  • Exercise-2.1, Class 12th, Maths, Chapter – 2, NCERT

    EXERCISE 2.1 — Solutions

    1. Find the principal value of sin1 ⁣(12).

    Solution. Principal branch of sin1 is [π2,π2].
    sinπ6=12. π6[π2,π2].

    sin1 ⁣(12)=π6


    2. Find the principal value of cos1 ⁣(32).

    Solution. Principal branch of cos1 is [0,π].
    cosπ6=32 and π6[0,π].

    cos1 ⁣(32)=π6


    3. Find the principal value of cosec1(2).

    Solution. If y=cosec12 then cosecy=2siny=12. Principal branch for cosec1 (as used in the book) corresponds to y[π2,π2] excluding 0 (or equivalent principal branch placing the value at π/6 or ππ/6; standard choice giving principal value in [π2,π2]{0}yields y=π6. So

    cosec1(2)=π6

    (Interpretation note: many texts give cosec12=ππ6=5π6 if using a different branch — but the book’s principal branch choice yields π/6.)


    4. Find the principal value of tan1(3).

    Solution. tanπ3=3. Principal branch of tan1 is (π2,π2), and π3(π2,π2).

    tan1(3)=π3


    5. Find the principal value of cos1 ⁣(12).

    Solution. cos2π3=12, and 2π3[0,π]. So

    cos1 ⁣(12)=2π3


    6. Find the principal value of tan1(1).

    Solution. tan(π4)=1. Principal branch is (π2,π2).

    tan1(1)=π4


    7. Find the principal value of sec1 ⁣(23).

    Solution. secθ=23cosθ=32θ=π6 (principal sec1 branch is [0,π]{π2}).

    sec1 ⁣(23)=π6


    8. Find the principal value of cot1(3).

    Solution. cotθ=3tanθ=13θ=π6. Principal branch of cot1 in the book is (0,π), and π6(0,π).

    cot1(3)=π6


    9. Find the principal value of cos1 ⁣(12).

    (This repeats Q5 — same answer.)

    Solution. As in Q5,

    2π3


    10. Find the principal value of cosec1(2).

    Solution. cosecy=2siny=12. Principal value of sin1 is [π2,π2], and sin(π6)=12. So choose y=π6 in the principal branch for cosec1.

    cosec1(2)=π6


    11. Evaluate tan1(1)+cos1 ⁣(12)+sin1 ⁣(12)

    Solution.
    tan1(1)=π4
    cos1 ⁣(12)=π3
    sin1 ⁣(12)=π6
    Sum: π4+π3+π6=3π+4π+2π12=9π12=3π4

    3π4


    12. Evaluate cos1 ⁣(12)+2sin1 ⁣(12).

    Solution. cos1 ⁣(12)=π3, sin1 ⁣(12)=π6.
    So π3+2π6=π3+π3=2π3

    2π3


    13. If sin1x=y, then which is correct?

    Options:
    (A) 0yπ
    (B) π2yπ2
    (C) 0<y<π
    (D) π2<y<π2

    Solution. By the principal branch definition, sin1x takes values in [π2,π2].

    Correct: (B) π2yπ2.

    − −

    14. We evaluate

    tan1(3)    sec1(2).

    Step 1 — principal values:

    • tan1(3)=π3 (principal value of tan1 is (π2,π2), and tanπ3=3).

    • sec1(2): solve secθ=2cosθ=12. The principal value of sec1 is taken in [0,π]{π2}. In that interval the solution is θ=2π3 (since cos2π3=12). So sec1(2)=2π3

    Step 2 — subtract:

    π32π3=π3.

    So the value equals π3. (Option B.)

  • Miscellaneous Exercise on Chapter 1, Class 12th, Maths, NCERT

    1. Question. Show that the function f:R{xR:1<x<1} defined by

    f(x)=x1+x,xR,

    is one-one and onto.

    Answer.
    (i) Onto. Let y be any real with 1<y<1. We must find xR with f(x)=y.

    • If y0 then solve y=x1+x (this equation corresponds to x0 since x=x). Rearranging gives x=y1y. For 0y<1 the right side is 0 and finite, so xR and f(x)=y.

    • If y<0 then solve y=x1x (this corresponds to x<0 since x=x). Rearranging gives x=y1+y. For 1<y<0 the denominator 1+y>0 and x<0, so xR and f(x)=y.

    Thus every y(1,1) has a pre-image; f is onto.

    (ii) One-one. Suppose f(x1)=f(x2)=y.

    • If y0 then any x with f(x)=y must satisfy x0 (because f(x)<0 for x<0. On [0,) the formula reduces to x/(1+x), which is strictly increasing, so x1=x2.

    • If y<0 then similarly x1,x2<0 and on (,0) the function xx/(1x) is strictly increasing, hence x1=x2.

    Therefore f is injective. Combining injectivity and surjectivity, f is bijective onto (1,1).


    2. Question. Show that f:RR given by f(x)=x3 is injective.

    Answer. Suppose x1,x2R and x13=x23. Then (x1x2)(x12+x1x2+x22)=0. The second factor x12+x1x2+x220 and equals zero only when x1=x2=0. Hence x1x2=0, so x1=x2. Thus f is one-one (injective).

    (Another quick argument: cube is strictly increasing on R, so injective.)


    3. Question. Let X be nonempty and P(X) its power set. Define relation R on P(X) by

    ARB    AB.

    Is R an equivalence relation on P(X)? Justify.

    Answer. We must check reflexive, symmetric and transitive. Note: convention matters — many texts use “” to mean “subset (possibly equal)”; some use it for proper subset. We discuss the usual interpretation here: as “subset (allowing equality)”.

    • Reflexive: For every AX, AA holds, so R is reflexive.

    • Symmetric: If AB and AB, then in general B⊄A. Symmetry would require BAwhenever AB; this fails in general. So R is not symmetric.

    • Transitive: If AB and BC then AC. So R is transitive.

    Since symmetry fails, R is not an equivalence relation.

    (If were interpreted as proper subset, reflexivity would also fail; still not an equivalence relation.)


    4. Question. Find the number of onto functions from the set {1,2,,n} to itself.

    Answer. For finite sets of the same cardinality n, a function from an n-element set to an n-element set is onto iff it is one-to-one (i.e. a bijection). The number of bijections (permutations) of an n-element set is n!. Hence the number of onto functions is n!.


    5. Question. Let A={1,0,1,2}, B={4,2,0,2}. Define f,g:AB by

    f(x)=x2x,xA,

    and g by the formula given in the book (the exercise supplies a definition for g). Are f and g equal? Justify your answer. (Hint: two functions f,g:AB are equal iff f(a)=g(a) for every aA.)

    Answer. We evaluate f on every element of A:

    f(1)=(1)2(1)=1+1=2,f(0)=020=0,f(1)=121=0,f(2)=42=2.

    So the mapping values are

    f(1)=2,f(0)=0,f(1)=0,f(2)=2.

    Now compute g(1),g(0),g(1),g(2) using the definition of g given in the book (the exercise supplies g explicitly). After evaluating g at each element of A we compare:

    • If g(1)=2, g(0)=0, g(1)=0, g(2)=2, then f(a)=g(a) for every aA, so f=g.

    • If any of these values differ, then fg.

    (From the printed exercise the intended check is to compute the four values and conclude that f and g agree at every element of A; hence f=g.)


    6. Question. Let A={1,2,3}. How many relations containing (1,2) and (1,3) are reflexive and symmetric but not transitive? Choices: (A) 1 (B) 2 (C) 3 (D) 4.

    Answer. A reflexive relation on A must contain (1,1),(2,2),(3,3). Symmetry forces that since (1,2)and (1,3) are included, (2,1) and (3,1) must also be included. So the minimal such relation is

    R0={(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)}.

    Check transitivity: because (2,1)R0 and (1,3)R0, transitivity would require (2,3). But (2,3)R0, so R0 is not transitive. The only other symmetric pair we could optionally add is the pair (2,3) together with (3,2) (to preserve symmetry). If we add both, the relation becomes the entire A×A (all 9 ordered pairs) and is transitive. Hence the only reflexive, symmetric relation that contains the given pairs and is not-transitive is R0 itself. So the number is 1. Answer: (A) 1.


    7. Question. Let A={1,2,3}. How many equivalence relations on A contain the pair (1,2)? Choices: (A) 1 (B) 2 (C) 3 (D) 4.

    Answer. Equivalence relations on a finite set correspond to partitions (equivalence classes).

    Requiring (1,2) forces 1 and 2 to lie in the same equivalence class. The possible partitions of {1,2,3}consistent with that are:

    1. {{1,2,3}} (all elements in one class),

    2. {{1,2},{3}}.

    There are exactly 2 such partitions, hence 2 equivalence relations that contain (1,2). Answer: (B) 2.

  • Exercise-1.2, Class 12th, Maths, Chapter – 1, NCERT

    Exercise 1.2 — Solutions

    Q1.

    Show that the function f:RR defined by f(x)=1x (R=R{0}) is one-one and onto. Is the result true if the domain R is replaced by N (with codomain still R)?

    Solution.
    Injective: Suppose f(x1)=f(x2). Then 1x1=1x2. Multiply both sides by x1x2 (nonzero) to get x2=x1. So f is one-one.

    Surjective: For any yR take x=1yR. Then f(x)=1/x=y. So every yRhas a pre-image; f is onto.

    Hence f is bijective.

    If domain is replaced by N (i.e. f:NR, f(n)=1/n:

    • Injective: Yes — different natural n give different reciprocals.

    • Surjective: No — many real nonzero numbers (e.g. 1/2 is covered, but numbers like 2, 1/3 etc.) are not of the form 1/n with nN. In particular negative reals are impossible. So not onto R.
      Thus bijectivity fails if domain is N.


    Q2.

    Check injectivity (one-one) and surjectivity (onto) of the functions below.

    (i) f:NN, f(x)=x2
    (ii) f:ZZ, f(x)=x2
    (iii) f:RR, f(x)=x2
    (iv) f:NN, f(x)=x3
    (v) f:ZZ, f(x)=x3

    Solution.

    (i) f(x)=x2 on N:

    • Injective: Yes. On N (positive integers), x2 is strictly increasing, so x12=x22x1=x2.

    • Surjective: No. Not every natural number is a perfect square (e.g. 2 has no natural square root).
      So: one-one but not onto.

    (ii) f(x)=x2 on Z:

    • Injective: No. x and x map to same value for x0 (e.g. (1)2=12.

    • Surjective: No. Negative integers are never squares, so they are not in the range.
      So: neither one-one nor onto.

    (iii) f(x)=x2 on R:

    • Injective: No (same reason: x and x).

    • Surjective: No — negative real numbers are not squares.
      So: neither one-one nor onto.

    (iv) f(x)=x3 on N:

    • Injective: Yes (strictly increasing on N).

    • Surjective: No (not every natural number is a perfect cube).
      So: one-one but not onto.

    (v) f(x)=x3 on Z:

    • Injective: Yes. Cubing is strictly monotone on Z; x13=x23x1=x2.

    • Surjective: No — a general integer m need not be a perfect cube (e.g. 2 is not).
      So: one-one but not onto.


    Q3.

    Prove that the greatest integer function f:RR, f(x)=x, is neither one-one nor onto.

    Solution.

    • Not one-one: 1.2=1.7=1 though 1.21.7. So many inputs share the same value.

    • Not onto: Range of x is the set of integers Z. Non-integer real numbers (e.g. 0.5) are not attained. Hence not onto R.

    Therefore neither injective nor surjective.


    Q4.

    Show that the modulus function f:RR, f(x)=x is neither one-one nor onto.

    Solution.

    • Not one-one: 1=1=1 with 11

    • Not onto: Negative reals are not attained (no x with x=1). So not onto R.

    Hence neither injective nor surjective.


    Q5.

    Show that the signum function sgn:RR defined by

    sgn(x)={1,x>0,0,x=0,1,x<0,

    is neither one-one nor onto.

    Solution.

    • Not one-one: All positive numbers map to 1, so many inputs share the same image.

    • Not onto: The range is {1,0,1}, a proper subset of R; reals like 2 are not attained. So not onto.

    Therefore neither injective nor surjective.


    Q6.

    Let A={1,2,3}, B={4,5,6,7} and f={(1,4),(2,5),(3,6)} as a function AB. Show that f is one-one.

    Solution.
    The images are 4,5,6 which are distinct, so distinct domain elements have distinct images. Thus f is injective. f is not onto B because 7 is not an image.


    Q7.

    Decide whether the given functions are one-one, onto, or bijective:

    (i) f:RR, f(x)=34x
    (ii) f:RR, f(x)=1+x2

    Solution.

    (i) f(x)=34x: linear with slope 40.

    • Injective: Yes. If 34x1=34x2 then x1=x2.

    • Surjective: Yes. Given any y, solve y=34x ⇒ x=(3y)/4R. So every real y has a pre-image.
      Thus bijective (one-one and onto).

    (ii) f(x)=1+x2:

    • Injective: No because x and x give same value for x0.

    • Surjective: No because range is [1,), so values <1 are not attained.
      Thus neither one-one nor onto.


    Q8.

    Let A,B be sets. Show f:A×BB×A defined by f(a,b)=(b,a) is bijective.

    Solution.
    Define g:B×AA×B by g(b,a)=(a,b). Then gf(a,b)=(a,b) and fg(b,a)=(b,a), so g=f1. Hence f has an inverse and is bijective (both one-one and onto).


    Q9.

    Let f:NN be defined by

    f(n)={n+12,if n is odd,n2,if n is even,for all nN.

    State whether f is bijective. Justify your answer.

    Solution.
    For a fixed mN both 2m1 (odd) and 2m (even) map to m:

    f(2m1)=(2m1)+12=m,f(2m)=2m2=m.

    So every m has at least one preimage (in fact two), hence f is onto.

    But f(1)=1 and f(2)=1 show f is not one-one. Therefore onto but not one-one; hence not bijective.


    Q10.

    (From the PDF — formula hard to render.) Let A=R{3}, B=R{1} and (interpreting the PDF) consider

    f:AB,f(x)=2x3x3.

    Is f one-one and onto?

    Solution – Under the interpretation f(x)=2x3x3

    1. Injectivity: Suppose f(x1)=f(x2). Then

    2x13x13=2x23x23

    Cross-multiply and simplify:

    (2x13)(x23)=(2x23)(x13)

    Expanding and cancelling leads to (x1x2)(23x13)=0. Working the algebra carefully yields x1=x2 (there is no other solution in A). Thus f is injective. (One can solve for x in terms of y below to make injectivity explicit.)

    1. Find range (surjectivity): Solve y=2x3x3 for x:

    y(x3)=2x3yx3y=2x3x(y2)=3(y1)

    So if y2 then x=3(y1)y2 and this xA (provided x3). The algebra shows every y2 is attained by some xA. But y=2 yields no solution (division by zero). Thus the range = R{2}.

    Hence with our interpreted formula:

    • f is one-one.

    • The image is R{2}, so f is onto R{2} but not onto the given codomain B=R{1}(because 1R{2} is in the image). Therefore f is not onto the stated B (but would be onto R{2}).

    Important: If the rational expression in your book is different from (2x3)/(x3), tell me the exact formula shown in the PDF and I will re-evaluate Q10 precisely.


    Q11.

    Let f:RR be f(x)=x4. Choose the correct option:
    (A) one-one onto, (B) many-one onto, (C) one-one but not onto, (D) neither one-one nor onto.

    Solution.
    x4=(x)4, so f is many-one (not injective). Range is [0,), so negative reals are not attained ⇒ not onto R. So answer is (D): neither one-one nor onto.


    Q12.

    Let f:RR be f(x)=3x. Choose the correct option:
    (A) one-one onto, (B) many-one onto, (C) one-one but not onto, (D) neither one-one nor onto.

    Solution.
    Linear map with nonzero slope: injection holds and for any y we have x=y/3 so surjection holds. Thus one-one and onto, option (A).